Karna Terpstra, Citlali Gutiérrez, Kai Gui and Liviu M. Mirica*,
{"title":"Donepezil and Memantine Derivatives for Dual-Function and Prodrug Applications in Alzheimer’s Disease","authors":"Karna Terpstra, Citlali Gutiérrez, Kai Gui and Liviu M. Mirica*, ","doi":"10.1021/acschemneuro.5c00493","DOIUrl":null,"url":null,"abstract":"<p >The treatment of Alzheimer’s disease by acetylcholinesterase (AChE) and <i>N</i>-methyl-<span>d</span>-aspartate receptor (NMDAR) inhibitors is limited by the narrow therapeutic window and adverse side effects of the drugs. This study aims to increase the efficacy and limit the side effects of donepezil, an AChE inhibitor, and memantine, an NMDAR inhibitor, through the addition of amyloid-β (Aβ)-targeting fragments to create dual-function compounds. The incorporation of the amyloid-targeting fragments successfully produced compounds with affinity for Aβ fibrils, and that can stain amyloid plaques in the brains of 5xFAD mice. The donepezil-based compounds showed significant changes in AChE inhibition compared to donepezil due to the incorporation of the Aβ-targeting fragment and as confirmed by molecular docking studies. The memantine-derived compound showed good brain uptake in 5xFAD mice but lacked compatibility with NMDAR inhibition based on in vitro assays and molecular docking. Importantly, the memantine-derived compound acts as a prodrug in vivo, releasing memantine within a pharmacologically relevant time frame. Overall, these findings suggest that dual-function compounds may be useful as drug delivery agents that can be metabolized to release an active drug in areas of the brain rich in amyloid plaques and thus could lead to improved treatments for Alzheimer’s disease.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"16 18","pages":"3591–3602"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acschemneuro.5c00493","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The treatment of Alzheimer’s disease by acetylcholinesterase (AChE) and N-methyl-d-aspartate receptor (NMDAR) inhibitors is limited by the narrow therapeutic window and adverse side effects of the drugs. This study aims to increase the efficacy and limit the side effects of donepezil, an AChE inhibitor, and memantine, an NMDAR inhibitor, through the addition of amyloid-β (Aβ)-targeting fragments to create dual-function compounds. The incorporation of the amyloid-targeting fragments successfully produced compounds with affinity for Aβ fibrils, and that can stain amyloid plaques in the brains of 5xFAD mice. The donepezil-based compounds showed significant changes in AChE inhibition compared to donepezil due to the incorporation of the Aβ-targeting fragment and as confirmed by molecular docking studies. The memantine-derived compound showed good brain uptake in 5xFAD mice but lacked compatibility with NMDAR inhibition based on in vitro assays and molecular docking. Importantly, the memantine-derived compound acts as a prodrug in vivo, releasing memantine within a pharmacologically relevant time frame. Overall, these findings suggest that dual-function compounds may be useful as drug delivery agents that can be metabolized to release an active drug in areas of the brain rich in amyloid plaques and thus could lead to improved treatments for Alzheimer’s disease.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research