{"title":"Nrf2 Activation Mitigates Silver Nanoparticle-Induced Ferroptosis in Hepatocytes","authors":"Ruirui Wang, Jiaqi Lan, Xinyue Wang, Yujia Zhang, Zhuang Duan, Zhiwen Liu, Lingyu Zhang, Qiang Fang, Fengchao Wang* and Jiangyan Li*, ","doi":"10.1021/acs.chemrestox.5c00136","DOIUrl":null,"url":null,"abstract":"<p >Silver nanoparticles (AgNPs), a promising class of metallic nanomaterials with strong antibacterial properties and biomedical potential, are increasingly being used in a variety of consumer products. The widespread application of AgNPs has raised concerns about their toxicological effects, particularly their accumulation in the liver and the associated oxidative stress. However, the precise molecular mechanisms driving these effects remain unclear. In this study, we provide evidence that AgNPs trigger ferroptosis in both mouse hepatocytes and HepG2 cells. Transcriptomic analysis identified ferroptosis is a primary cellular response to AgNP exposure, with Nrf2 serving a protective function. Specifically, AgNPs increased p62 expression, which in turn stabilized Nrf2 by suppressing its interaction with Keap1. Upon activation, Nrf2 enhances the transcription of key antioxidant enzymes, including NQO1 and HO-1, thereby alleviating ferroptosis. Additionally, we discovered that Nrf2 activation regulates iron storage by modulating FTH and FTL expression, thereby mitigating AgNP-induced ferroptosis in hepatocytes. These findings clarify the molecular basis of AgNP-induced ferroptosis in hepatocytes and underscore the crucial role of Nrf2 signaling in counteracting oxidative stress and ferroptosis.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":"38 9","pages":"1485–1494"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemrestox.5c00136","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Silver nanoparticles (AgNPs), a promising class of metallic nanomaterials with strong antibacterial properties and biomedical potential, are increasingly being used in a variety of consumer products. The widespread application of AgNPs has raised concerns about their toxicological effects, particularly their accumulation in the liver and the associated oxidative stress. However, the precise molecular mechanisms driving these effects remain unclear. In this study, we provide evidence that AgNPs trigger ferroptosis in both mouse hepatocytes and HepG2 cells. Transcriptomic analysis identified ferroptosis is a primary cellular response to AgNP exposure, with Nrf2 serving a protective function. Specifically, AgNPs increased p62 expression, which in turn stabilized Nrf2 by suppressing its interaction with Keap1. Upon activation, Nrf2 enhances the transcription of key antioxidant enzymes, including NQO1 and HO-1, thereby alleviating ferroptosis. Additionally, we discovered that Nrf2 activation regulates iron storage by modulating FTH and FTL expression, thereby mitigating AgNP-induced ferroptosis in hepatocytes. These findings clarify the molecular basis of AgNP-induced ferroptosis in hepatocytes and underscore the crucial role of Nrf2 signaling in counteracting oxidative stress and ferroptosis.
期刊介绍:
Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.