Chamika Harshani Algama, Tracy A. Bruce-Tagoe, Joy Adetunji, Tongye Shen, Michael K. Danquah, Soma Dhakal
{"title":"Integrating FRET and Molecular Dynamics Simulation for Single-Molecule Aptameric Detection of Staphylococcus aureus IsdA Surface Protein","authors":"Chamika Harshani Algama, Tracy A. Bruce-Tagoe, Joy Adetunji, Tongye Shen, Michael K. Danquah, Soma Dhakal","doi":"10.1002/biot.70101","DOIUrl":null,"url":null,"abstract":"<p><i>Staphylococcus aureus</i> is ranked among the top five most common foodborne pathogens affecting public health and the economy worldwide. To improve detection and reduce diagnostic burdens, several detection methods from traditional culture-based techniques to biosensing platforms have evolved. Among several markers, surface proteins are considered to be the most important markers due to the specific roles they play in the survival and colonization of the bacterium on hosts. Here, we have developed a detection platform for a key surface protein, iron-regulated surface determinant protein A (IsdA), using a combination of computationally developed aptamer and single-molecule fluorescence resonance energy transfer (smFRET). Computationally generated RNA aptamer incorporated into the FRET-based sensor show high specificity detection of IsdA with a detection limit down to 0.6 pM and dynamic range extending to ∼10 nM. Molecular dynamics (MD) simulations show distinct conformational flexibility of the unbound aptamer and a reduced flexibility for the aptamer-IsdA complex, corresponding to the experimentally observed higher FRET efficiencies. The FRET-based single-molecule aptasensor that we developed has great potential for rapid monitoring <i>S. aureus</i>. Further, the developed approach has the potential to be broadly applicable across diverse fields of biotechnology including environmental monitoring, forensic analysis, and clinical diagnostics.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"20 9","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/epdf/10.1002/biot.70101","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/biot.70101","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Staphylococcus aureus is ranked among the top five most common foodborne pathogens affecting public health and the economy worldwide. To improve detection and reduce diagnostic burdens, several detection methods from traditional culture-based techniques to biosensing platforms have evolved. Among several markers, surface proteins are considered to be the most important markers due to the specific roles they play in the survival and colonization of the bacterium on hosts. Here, we have developed a detection platform for a key surface protein, iron-regulated surface determinant protein A (IsdA), using a combination of computationally developed aptamer and single-molecule fluorescence resonance energy transfer (smFRET). Computationally generated RNA aptamer incorporated into the FRET-based sensor show high specificity detection of IsdA with a detection limit down to 0.6 pM and dynamic range extending to ∼10 nM. Molecular dynamics (MD) simulations show distinct conformational flexibility of the unbound aptamer and a reduced flexibility for the aptamer-IsdA complex, corresponding to the experimentally observed higher FRET efficiencies. The FRET-based single-molecule aptasensor that we developed has great potential for rapid monitoring S. aureus. Further, the developed approach has the potential to be broadly applicable across diverse fields of biotechnology including environmental monitoring, forensic analysis, and clinical diagnostics.
Biotechnology JournalBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍:
Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances.
In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office.
BTJ promotes a special emphasis on:
Systems Biotechnology
Synthetic Biology and Metabolic Engineering
Nanobiotechnology and Biomaterials
Tissue engineering, Regenerative Medicine and Stem cells
Gene Editing, Gene therapy and Immunotherapy
Omics technologies
Industrial Biotechnology, Biopharmaceuticals and Biocatalysis
Bioprocess engineering and Downstream processing
Plant Biotechnology
Biosafety, Biotech Ethics, Science Communication
Methods and Advances.