PlasmoDocking: A User-Friendly Open-Source Web Tool for Virtual Screening Targeting Plasmodium falciparum Enzymes

IF 4.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Fernando Loza Guariero, Eduardo Pantoja de Macedo, Elise Bittencourt de Laia, Joseph Albert Medeiros Evaristo, Geisa Paulino Caprini Evaristo, Fernando Berton Zanchi
{"title":"PlasmoDocking: A User-Friendly Open-Source Web Tool for Virtual Screening Targeting Plasmodium falciparum Enzymes","authors":"Fernando Loza Guariero,&nbsp;Eduardo Pantoja de Macedo,&nbsp;Elise Bittencourt de Laia,&nbsp;Joseph Albert Medeiros Evaristo,&nbsp;Geisa Paulino Caprini Evaristo,&nbsp;Fernando Berton Zanchi","doi":"10.1002/jcc.70225","DOIUrl":null,"url":null,"abstract":"<p>Virtual screening through molecular docking represents a fundamental computational methodology extensively employed in the identification of therapeutic compounds for malaria and other parasitic diseases. Although numerous software platforms are available, including AutodockGPU, the command-line interface requirements present significant barriers to non-specialized users, while multi-target screening protocols introduce additional complexity in receptor preparation procedures. To address these limitations, we developed Plasmodocking, a comprehensive web-based platform designed to automate molecular docking simulations against predefined <i>Plasmodium falciparum</i> targets (https://plasmodocking-unir.ecotechamazonia.com.br/). The platform enables users to submit up to 10 molecular structures (.sdf format) for automated AutodockGPU screening against 38 pre-configured parasite targets, facilitating systematic comparison of binding energies with co-crystallized ligands. Developed using Python and Next.js, Plasmodocking accelerates malaria drug discovery by enabling simultaneous multi-target docking simulations within a single experimental framework. The open-source codebase is available at: https://github.com/LABIOQUIM/PlasmoDocking-Client.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 23","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcc.70225","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70225","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Virtual screening through molecular docking represents a fundamental computational methodology extensively employed in the identification of therapeutic compounds for malaria and other parasitic diseases. Although numerous software platforms are available, including AutodockGPU, the command-line interface requirements present significant barriers to non-specialized users, while multi-target screening protocols introduce additional complexity in receptor preparation procedures. To address these limitations, we developed Plasmodocking, a comprehensive web-based platform designed to automate molecular docking simulations against predefined Plasmodium falciparum targets (https://plasmodocking-unir.ecotechamazonia.com.br/). The platform enables users to submit up to 10 molecular structures (.sdf format) for automated AutodockGPU screening against 38 pre-configured parasite targets, facilitating systematic comparison of binding energies with co-crystallized ligands. Developed using Python and Next.js, Plasmodocking accelerates malaria drug discovery by enabling simultaneous multi-target docking simulations within a single experimental framework. The open-source codebase is available at: https://github.com/LABIOQUIM/PlasmoDocking-Client.

Abstract Image

PlasmoDocking:一个用户友好的开源网络工具,用于针对恶性疟原虫酶的虚拟筛选
通过分子对接进行虚拟筛选是一种广泛用于鉴定疟疾和其他寄生虫病治疗化合物的基本计算方法。尽管有许多软件平台可用,包括AutodockGPU,但命令行界面要求对非专业用户存在重大障碍,而多目标筛选协议在受体制备过程中引入了额外的复杂性。为了解决这些限制,我们开发了Plasmodocking,这是一个基于web的综合平台,旨在针对预定义的恶性疟原虫目标(https://plasmodocking-unir.ecotechamazonia.com.br/)自动进行分子对接模拟。该平台允许用户提交多达10个分子结构(。sdf格式)用于自动AutodockGPU筛选38个预先配置的寄生虫靶标,促进与共结晶配体的结合能的系统比较。Plasmodocking使用Python和Next.js开发,通过在单个实验框架内实现同步多靶点对接模拟,加速了疟疾药物的发现。开源代码库可从https://github.com/LABIOQUIM/PlasmoDocking-Client获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信