Enhancing Car Tracking Systems With DNN-LoRa

IF 0.5 Q4 TELECOMMUNICATIONS
Malak Abid Ali Khan, Senlin Luo
{"title":"Enhancing Car Tracking Systems With DNN-LoRa","authors":"Malak Abid Ali Khan,&nbsp;Senlin Luo","doi":"10.1002/itl2.70130","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper outlines a fusion of deep neural network and LoRa technology for car tracking optimization. LoRa's SX1301 gateway (GW) applies the Bayesian game parameter selection (BGPS) approach for switching the transmission power at the network server. At the same time, the car node (CN) uses a hybrid model to change the spreading factor and data rate. By reducing power losses among GWs, BGPS substantially increases the packet success rate (PSR) at the CN. The hybrid model enables adaptive decision-making, resulting in improved tracking precision and reduced latency with efficient energy usage. However, it exhibits a 95.9% PSR with increased latency noted at the lower bandwidth.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 5","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper outlines a fusion of deep neural network and LoRa technology for car tracking optimization. LoRa's SX1301 gateway (GW) applies the Bayesian game parameter selection (BGPS) approach for switching the transmission power at the network server. At the same time, the car node (CN) uses a hybrid model to change the spreading factor and data rate. By reducing power losses among GWs, BGPS substantially increases the packet success rate (PSR) at the CN. The hybrid model enables adaptive decision-making, resulting in improved tracking precision and reduced latency with efficient energy usage. However, it exhibits a 95.9% PSR with increased latency noted at the lower bandwidth.

用DNN-LoRa增强汽车跟踪系统
本文提出了一种融合深度神经网络和LoRa技术的汽车跟踪优化方法。LoRa的SX1301网关(GW)采用BGPS (Bayesian game parameter selection)方法在网络服务器端进行传输功率的切换。同时,汽车节点(CN)采用混合模型来改变扩展因子和数据速率。通过减少GWs之间的功率损耗,BGPS大幅度提高了网络上的包成功率(PSR)。混合模型实现了自适应决策,从而提高了跟踪精度,减少了延迟,同时有效地利用了能源。然而,它显示出95.9%的PSR,并且在较低带宽下注意到延迟增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信