Xiang Chen, Bin Wang, Laifeng Zhang, Yanqing Lai, Tingting Shi, Mengyue Zhu, Yuanzhe Li
{"title":"Adaptive Network Slicing and LSTM-Based Resource Allocation for Real-Time Industrial Robot Control in 6G Networks","authors":"Xiang Chen, Bin Wang, Laifeng Zhang, Yanqing Lai, Tingting Shi, Mengyue Zhu, Yuanzhe Li","doi":"10.1049/cmu2.70080","DOIUrl":null,"url":null,"abstract":"<p>The deployment of industrial robots in time-critical applications demands ultra-low latency and high reliability in communication systems. This study presents a novel delay optimisation framework for industrial robot control systems using 6G network slicing technologies. A Gale–Shapley (GS)-based elastic switching model is proposed to dynamically match robot controllers to optimised network slices and base stations under latency-sensitive conditions. To enhance resource adaptability, a long short-term memory (LSTM)-based encoder-decoder structure is developed for predictive resource allocation across slices. The proposed integrated matching mechanism achieves a success rate of 91.16% for slice access and a base station access rate of 90.83%, outperforming conventional integrated and two-stage schemes. The LSTM-based resource allocation achieves a mean absolute error of 0.04 and a violation rate below 10%, with over 92% utilisation of both node and link resources. Experimental simulations demonstrate a consistent end-to-end latency below 7 ms and a throughput of 18.4 Mbit/s, validating the proposed models' effectiveness in ensuring robust, real-time communication for industrial robot operations. This research contributes a scalable solution for dynamic 6G network resource management, providing a foundation for advanced industrial automation and intelligent manufacturing.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"19 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.70080","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/cmu2.70080","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The deployment of industrial robots in time-critical applications demands ultra-low latency and high reliability in communication systems. This study presents a novel delay optimisation framework for industrial robot control systems using 6G network slicing technologies. A Gale–Shapley (GS)-based elastic switching model is proposed to dynamically match robot controllers to optimised network slices and base stations under latency-sensitive conditions. To enhance resource adaptability, a long short-term memory (LSTM)-based encoder-decoder structure is developed for predictive resource allocation across slices. The proposed integrated matching mechanism achieves a success rate of 91.16% for slice access and a base station access rate of 90.83%, outperforming conventional integrated and two-stage schemes. The LSTM-based resource allocation achieves a mean absolute error of 0.04 and a violation rate below 10%, with over 92% utilisation of both node and link resources. Experimental simulations demonstrate a consistent end-to-end latency below 7 ms and a throughput of 18.4 Mbit/s, validating the proposed models' effectiveness in ensuring robust, real-time communication for industrial robot operations. This research contributes a scalable solution for dynamic 6G network resource management, providing a foundation for advanced industrial automation and intelligent manufacturing.
期刊介绍:
IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth.
Topics include, but are not limited to:
Coding and Communication Theory;
Modulation and Signal Design;
Wired, Wireless and Optical Communication;
Communication System
Special Issues. Current Call for Papers:
Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf
UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf