Additively fabricated innovative material: numerical prediction and experimental comparison of fracture toughness Additiv gefertigter innovativer Werkstoff: numerische Vorhersage und experimenteller Vergleich der Bruchzähigkeit

IF 1.1 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
V. Dhinakaran, R. Yang, M. Mohith, A. Pechimuthu, J. Kanishkaa, M. A. Browne, K. Sanjay, S. M. Kumar
{"title":"Additively fabricated innovative material: numerical prediction and experimental comparison of fracture toughness\n Additiv gefertigter innovativer Werkstoff: numerische Vorhersage und experimenteller Vergleich der Bruchzähigkeit","authors":"V. Dhinakaran,&nbsp;R. Yang,&nbsp;M. Mohith,&nbsp;A. Pechimuthu,&nbsp;J. Kanishkaa,&nbsp;M. A. Browne,&nbsp;K. Sanjay,&nbsp;S. M. Kumar","doi":"10.1002/mawe.70008","DOIUrl":null,"url":null,"abstract":"<p>Every functional component in current industries requires unique and adaptable behavior for the materials. The process of forming new composite materials requires time and significant cost. The goal of this study is to fabricate novel materials using alternative layers of various materials, such as poly-lactic acid (M1), wood reinforced poly-lactic acid (M2) and ceramic reinforced poly-lactic acid (M3), fabricated using fused deposition modeling. The evaluation of fracture toughness is essential for materials to ensure its applicability for their intended use. Extended finite element method and experimentation were used to evaluate fracture toughness. The results show that, when compared to poly-lactic acid M1 (fracture toughness at mode I = 4.84 MPa√m), wood reinforced poly-lactic acid M2 (fracture toughness at mode I = 3.25 MPa√m), and ceramic reinforced poly-lactic acid M3 (fracture toughness at mode I = 5.76 MPa√m), the innovative material exhibits superior fracture toughness at mode I = 16.54 MPa√m (experimentally) and fracture toughness at mode I = 17.15 MPa√m (simulation). Equivalent experimental and extended finite element method outcomes provide two levels of assurance, giving fidelity and allowing incorporation of innovative material potential in lightweight application that demand high fracture resistance. This study offers first-hand experience for implementing innovative material in a variety of industrial and structural application.</p>","PeriodicalId":18366,"journal":{"name":"Materialwissenschaft und Werkstofftechnik","volume":"56 7","pages":"957-965"},"PeriodicalIF":1.1000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialwissenschaft und Werkstofftechnik","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mawe.70008","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Every functional component in current industries requires unique and adaptable behavior for the materials. The process of forming new composite materials requires time and significant cost. The goal of this study is to fabricate novel materials using alternative layers of various materials, such as poly-lactic acid (M1), wood reinforced poly-lactic acid (M2) and ceramic reinforced poly-lactic acid (M3), fabricated using fused deposition modeling. The evaluation of fracture toughness is essential for materials to ensure its applicability for their intended use. Extended finite element method and experimentation were used to evaluate fracture toughness. The results show that, when compared to poly-lactic acid M1 (fracture toughness at mode I = 4.84 MPa√m), wood reinforced poly-lactic acid M2 (fracture toughness at mode I = 3.25 MPa√m), and ceramic reinforced poly-lactic acid M3 (fracture toughness at mode I = 5.76 MPa√m), the innovative material exhibits superior fracture toughness at mode I = 16.54 MPa√m (experimentally) and fracture toughness at mode I = 17.15 MPa√m (simulation). Equivalent experimental and extended finite element method outcomes provide two levels of assurance, giving fidelity and allowing incorporation of innovative material potential in lightweight application that demand high fracture resistance. This study offers first-hand experience for implementing innovative material in a variety of industrial and structural application.

Abstract Image

加法制造的创新材料:断裂韧性的数值预测和实验比较
当前工业中的每个功能部件都要求材料具有独特的适应性行为。形成新的复合材料的过程需要时间和巨大的成本。本研究的目标是利用各种材料的替代层来制造新型材料,如聚乳酸(M1),木材增强聚乳酸(M2)和陶瓷增强聚乳酸(M3),使用熔融沉积建模制造。断裂韧性的评估是保证材料适用于预期用途的必要条件。采用扩展有限元法和试验方法对断裂韧性进行了评价。结果表明,与聚乳酸M1(ⅰ模式断裂韧性= 4.84 MPa√m)、木增强聚乳酸M2(ⅰ模式断裂韧性= 3.25 MPa√m)和陶瓷增强聚乳酸M3(ⅰ模式断裂韧性= 5.76 MPa√m)相比,新型材料在ⅰ模式断裂韧性= 16.54 MPa√m(实验)和ⅰ模式断裂韧性= 17.15 MPa√m(模拟)下均表现出优异的断裂韧性。等效实验和扩展有限元方法的结果提供了两个层面的保证,既保证了保真度,又允许在要求高抗断裂性的轻量化应用中结合创新材料的潜力。本研究为在各种工业和结构应用中实施创新材料提供了第一手经验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materialwissenschaft und Werkstofftechnik
Materialwissenschaft und Werkstofftechnik 工程技术-材料科学:综合
CiteScore
2.10
自引率
9.10%
发文量
154
审稿时长
4-8 weeks
期刊介绍: Materialwissenschaft und Werkstofftechnik provides fundamental and practical information for those concerned with materials development, manufacture, and testing. Both technical and economic aspects are taken into consideration in order to facilitate choice of the material that best suits the purpose at hand. Review articles summarize new developments and offer fresh insight into the various aspects of the discipline. Recent results regarding material selection, use and testing are described in original articles, which also deal with failure treatment and investigation. Abstracts of new publications from other journals as well as lectures presented at meetings and reports about forthcoming events round off the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信