A process simulation and optimization study of non-catalytic biodiesel synthesis from algae oil using supercritical methanol Eine Studie zur Prozesssimulation und Optimierung der nicht-katalytischen Biodieselsynthese aus Algenöl unter Verwendung von überkritischem Methanol

IF 1.1 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
A. B. Mahfouz, A. Abdulrahman, M. Alsaady, A. Ahmed, A. S. Hanbazazah
{"title":"A process simulation and optimization study of non-catalytic biodiesel synthesis from algae oil using supercritical methanol\n Eine Studie zur Prozesssimulation und Optimierung der nicht-katalytischen Biodieselsynthese aus Algenöl unter Verwendung von überkritischem Methanol","authors":"A. B. Mahfouz,&nbsp;A. Abdulrahman,&nbsp;M. Alsaady,&nbsp;A. Ahmed,&nbsp;A. S. Hanbazazah","doi":"10.1002/mawe.70000","DOIUrl":null,"url":null,"abstract":"<p>The growing global demand for sustainable and renewable energy sources has intensified research efforts in biodiesel production. This study investigates the optimization and simulation of biodiesel production from Chlorella algae oil using a supercritical transesterification process without any catalyst. Avoiding the use of a catalyst eliminates potential issues associated with water content in the algae oil and reduces pretreatment costs. The research involves a two-step approach: conducting a simulation study to develop a validated process simulation model, followed by process optimization using response surface methodology (RSM). The input parameters - temperature, pressure, and residence time - are analyzed to maximize the biodiesel yield, which is the response function. A face-centered central composite design is utilized for experimental setup and statistical analysis of the results. Analysis of variance (ANOVA) is used for the optimization procedure. The statistical analysis highlights temperature as the most significant process parameter compared to residence time and pressure. This optimization process results in a maximum biodiesel yield of 99.6 % at an optimum temperature of 343.5 °C, 43.2 bar pressure, and 139.5 minutes of residence time. This study provides significant insights into non-catalytic biodiesel production from algae oil, presenting an effective method for improving biodiesel yield.</p>","PeriodicalId":18366,"journal":{"name":"Materialwissenschaft und Werkstofftechnik","volume":"56 7","pages":"1027-1037"},"PeriodicalIF":1.1000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialwissenschaft und Werkstofftechnik","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mawe.70000","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The growing global demand for sustainable and renewable energy sources has intensified research efforts in biodiesel production. This study investigates the optimization and simulation of biodiesel production from Chlorella algae oil using a supercritical transesterification process without any catalyst. Avoiding the use of a catalyst eliminates potential issues associated with water content in the algae oil and reduces pretreatment costs. The research involves a two-step approach: conducting a simulation study to develop a validated process simulation model, followed by process optimization using response surface methodology (RSM). The input parameters - temperature, pressure, and residence time - are analyzed to maximize the biodiesel yield, which is the response function. A face-centered central composite design is utilized for experimental setup and statistical analysis of the results. Analysis of variance (ANOVA) is used for the optimization procedure. The statistical analysis highlights temperature as the most significant process parameter compared to residence time and pressure. This optimization process results in a maximum biodiesel yield of 99.6 % at an optimum temperature of 343.5 °C, 43.2 bar pressure, and 139.5 minutes of residence time. This study provides significant insights into non-catalytic biodiesel production from algae oil, presenting an effective method for improving biodiesel yield.

Abstract Image

利用超临界甲醇从海藻油合成非催化生物柴油的过程模拟和优化研究
全球对可持续和可再生能源的需求不断增长,加大了生物柴油生产的研究力度。以小球藻油为原料,采用无催化剂的超临界酯交换工艺制备生物柴油。避免使用催化剂消除了与藻油含水量相关的潜在问题,并降低了预处理成本。该研究分为两步:首先进行仿真研究,建立一个经过验证的过程仿真模型,然后使用响应面法(RSM)对过程进行优化。分析输入参数——温度、压力和停留时间——以最大限度地提高生物柴油的产量,这是响应函数。实验设置采用面心中心复合设计,并对实验结果进行统计分析。方差分析(ANOVA)用于优化过程。统计分析表明,与停留时间和压力相比,温度是最重要的工艺参数。在最佳温度为343.5°C,压力为43.2 bar,停留时间为139.5分钟的条件下,该优化过程的最大生物柴油收率为99.6%。该研究为藻类油非催化生产生物柴油提供了重要的见解,为提高生物柴油产量提供了有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materialwissenschaft und Werkstofftechnik
Materialwissenschaft und Werkstofftechnik 工程技术-材料科学:综合
CiteScore
2.10
自引率
9.10%
发文量
154
审稿时长
4-8 weeks
期刊介绍: Materialwissenschaft und Werkstofftechnik provides fundamental and practical information for those concerned with materials development, manufacture, and testing. Both technical and economic aspects are taken into consideration in order to facilitate choice of the material that best suits the purpose at hand. Review articles summarize new developments and offer fresh insight into the various aspects of the discipline. Recent results regarding material selection, use and testing are described in original articles, which also deal with failure treatment and investigation. Abstracts of new publications from other journals as well as lectures presented at meetings and reports about forthcoming events round off the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信