Non-convergence of the Navier–Stokes Equations Toward the Euler Equations in the Endpoint Besov Spaces

IF 1.7 2区 数学 Q2 MATHEMATICS, APPLIED
Yanghai Yu, Jinlu Li
{"title":"Non-convergence of the Navier–Stokes Equations Toward the Euler Equations in the Endpoint Besov Spaces","authors":"Yanghai Yu,&nbsp;Jinlu Li","doi":"10.1007/s00245-025-10313-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the inviscid limit problem to the higher dimensional incompressible Navier–Stokes equations in the whole space. It was proved in [Guo et al. J. Funct. Anal. 276:2821–2830, 2019] that given initial data <span>\\(u_0\\in B^{s}_{p,r}\\)</span> with <span>\\(1\\le r&lt;\\infty\\)</span>, the solution of the Navier–Stokes equations converges strongly in <span>\\(B^{s}_{p,r}\\)</span> to the solution of the Euler equations as the viscosity parameter tends to zero. In the case when <span>\\(r=\\infty\\)</span>, we prove the failure of the <span>\\(B^{s}_{p,\\infty }\\)</span>-convergence of the Navier-Stokes equations toward the Euler equations in the inviscid limit.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"92 2","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-025-10313-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the inviscid limit problem to the higher dimensional incompressible Navier–Stokes equations in the whole space. It was proved in [Guo et al. J. Funct. Anal. 276:2821–2830, 2019] that given initial data \(u_0\in B^{s}_{p,r}\) with \(1\le r<\infty\), the solution of the Navier–Stokes equations converges strongly in \(B^{s}_{p,r}\) to the solution of the Euler equations as the viscosity parameter tends to zero. In the case when \(r=\infty\), we prove the failure of the \(B^{s}_{p,\infty }\)-convergence of the Navier-Stokes equations toward the Euler equations in the inviscid limit.

端点Besov空间中Navier-Stokes方程向Euler方程的非收敛性
本文研究了全空间中高维不可压缩Navier-Stokes方程的无粘极限问题。[Guo等人]证明了这一点。J.函数。[j] [j] . [j] .[276:2821-2830, 2019]给出初始数据\(u_0\in B^{s}_{p,r}\)和\(1\le r<\infty\),当粘度参数趋于零时,在\(B^{s}_{p,r}\)中Navier-Stokes方程的解强收敛于Euler方程的解。在\(r=\infty\)的情况下,我们证明了Navier-Stokes方程在无粘极限下向Euler方程的\(B^{s}_{p,\infty }\) -收敛性的失败。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
103
审稿时长
>12 weeks
期刊介绍: The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信