{"title":"Conformal Invariance and Phase Transitions: Implications for Stable Black Hole Horizons?","authors":"Pradosh Keshav MV, Arun Kenath","doi":"10.1134/S0202289325700203","DOIUrl":null,"url":null,"abstract":"<p>The behavior of black hole horizons under extreme conditions—such as near collapse or phase transitions—remains less understood, particularly in the context of soft hair and Aretakis instabilities. We show that the breakdown of conformal symmetry during the balding phase induces a topological reorganization of the horizon, leading to divergent entropy corrections and emergent pressure terms. These corrections exhibit universal scaling laws, analogous to quantum phase transitions in condensed matter systems, with extremal limits functioning as quantum critical points. Interestingly, by employing quasi-equilibrium boundary conditions, one could stabilize horizon dynamics without explicitly introducing ad hoc higher-order corrections, further limiting the universal applicability of conformal invariance in black hole physics.</p>","PeriodicalId":583,"journal":{"name":"Gravitation and Cosmology","volume":"31 3","pages":"326 - 335"},"PeriodicalIF":1.0000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gravitation and Cosmology","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S0202289325700203","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The behavior of black hole horizons under extreme conditions—such as near collapse or phase transitions—remains less understood, particularly in the context of soft hair and Aretakis instabilities. We show that the breakdown of conformal symmetry during the balding phase induces a topological reorganization of the horizon, leading to divergent entropy corrections and emergent pressure terms. These corrections exhibit universal scaling laws, analogous to quantum phase transitions in condensed matter systems, with extremal limits functioning as quantum critical points. Interestingly, by employing quasi-equilibrium boundary conditions, one could stabilize horizon dynamics without explicitly introducing ad hoc higher-order corrections, further limiting the universal applicability of conformal invariance in black hole physics.
期刊介绍:
Gravitation and Cosmology is a peer-reviewed periodical, dealing with the full range of topics of gravitational physics and relativistic cosmology and published under the auspices of the Russian Gravitation Society and Peoples’ Friendship University of Russia. The journal publishes research papers, review articles and brief communications on the following fields: theoretical (classical and quantum) gravitation; relativistic astrophysics and cosmology, exact solutions and modern mathematical methods in gravitation and cosmology, including Lie groups, geometry and topology; unification theories including gravitation; fundamental physical constants and their possible variations; fundamental gravity experiments on Earth and in space; related topics. It also publishes selected old papers which have not lost their topicality but were previously published only in Russian and were not available to the worldwide research community