Riul Jung, Carlos Ramos-Romero, Michael J. Kingan, Deepak Akiwate, Antonio J. Torija
{"title":"Reducing Tonal Noise of Contra-Rotating Unmanned Aerial System Rotors via Blade Rake Angle Adjustment","authors":"Riul Jung, Carlos Ramos-Romero, Michael J. Kingan, Deepak Akiwate, Antonio J. Torija","doi":"10.1007/s40857-025-00352-4","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates the effect of blade rake angle on the tonal noise produced by contra-rotating rotor systems suitable for use on small multi-rotor unmanned aerial systems (UAS). This investigation utilises semi-analytical, numerical, and experimental methods to investigate the physics of the noise generation mechanisms, generated noise levels and the psychoacoustic characteristics of this noise. Computational fluid dynamics (CFD) simulations and semi-analytical models are employed to predict the periodic unsteady loading on the rotor blades, and the loading data are used to predict the radiated noise for rotor systems with different blade rake angles. Experimental measurements of the noise produced by a rotor system with no blade rake angle were used as a baseline case, and predictions were used to synthesise and auralise the sound produced by rotor systems with different rake angles for psychoacoustic analysis. The results show that increasing the blade rake angle generally reduces the amplitude of prominent interaction tones due to the reduction in the unsteady loading along the blade span caused by bound potential field interactions as the blade rake angle increases. This causes a reduction in the perceived tonal noise level.</p></div>","PeriodicalId":54355,"journal":{"name":"Acoustics Australia","volume":"53 2","pages":"201 - 222"},"PeriodicalIF":1.8000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40857-025-00352-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustics Australia","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40857-025-00352-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the effect of blade rake angle on the tonal noise produced by contra-rotating rotor systems suitable for use on small multi-rotor unmanned aerial systems (UAS). This investigation utilises semi-analytical, numerical, and experimental methods to investigate the physics of the noise generation mechanisms, generated noise levels and the psychoacoustic characteristics of this noise. Computational fluid dynamics (CFD) simulations and semi-analytical models are employed to predict the periodic unsteady loading on the rotor blades, and the loading data are used to predict the radiated noise for rotor systems with different blade rake angles. Experimental measurements of the noise produced by a rotor system with no blade rake angle were used as a baseline case, and predictions were used to synthesise and auralise the sound produced by rotor systems with different rake angles for psychoacoustic analysis. The results show that increasing the blade rake angle generally reduces the amplitude of prominent interaction tones due to the reduction in the unsteady loading along the blade span caused by bound potential field interactions as the blade rake angle increases. This causes a reduction in the perceived tonal noise level.
期刊介绍:
Acoustics Australia, the journal of the Australian Acoustical Society, has been publishing high quality research and technical papers in all areas of acoustics since commencement in 1972. The target audience for the journal includes both researchers and practitioners. It aims to publish papers and technical notes that are relevant to current acoustics and of interest to members of the Society. These include but are not limited to: Architectural and Building Acoustics, Environmental Noise, Underwater Acoustics, Engineering Noise and Vibration Control, Occupational Noise Management, Hearing, Musical Acoustics.