The first South Korean data challenge for drug discovery using human and mouse liver microsomal stability data

IF 5.7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nam-Chul Cho, SeongEun Hong, Jin Sook Song, EuiJu Yeo, SoI Jung, Yuno Lee, Seul Gee Hwang, Su Min Kang, JaeSung Hwang, Tae-Eun Jin
{"title":"The first South Korean data challenge for drug discovery using human and mouse liver microsomal stability data","authors":"Nam-Chul Cho,&nbsp;SeongEun Hong,&nbsp;Jin Sook Song,&nbsp;EuiJu Yeo,&nbsp;SoI Jung,&nbsp;Yuno Lee,&nbsp;Seul Gee Hwang,&nbsp;Su Min Kang,&nbsp;JaeSung Hwang,&nbsp;Tae-Eun Jin","doi":"10.1186/s13321-025-01047-8","DOIUrl":null,"url":null,"abstract":"<div><p>The Korea Chemical Bank (KCB) has generated a dataset containing metabolic stability data for approximately 4,000 compounds that have been tested on human and mouse liver microsomes. The first South Korea Data Challenge, named the Jump AI Challenge for Drug Discovery (JUMP AI 2023), was opened using the metabolic stability data of KCB in 2023. The objective of the JUMP AI 2023 was to promote and encourage the development of new drugs using artificial intelligence (AI) technology in South Korea. A total of 1254 teams participated in the competition, developing algorithms to estimate the remaining percentage of compounds after 30 min of incubation with human and mouse liver microsomes. The data set comprised training and test sets of 3498 and 483 compounds, respectively. This paper provides an overview of the JUMP AI 2023 and its outcomes, highlighting the diverse range of algorithms and artificial intelligence technologies employed by the competing teams. Among these, five teams stood out by utilizing GNN-based approaches winning awards. This competition was the first AI competition for drug discovery in South Korea, attracting numerous researchers and playing a key role in promoting drug research through the application of artificial intelligence technologies.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01047-8","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-01047-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Korea Chemical Bank (KCB) has generated a dataset containing metabolic stability data for approximately 4,000 compounds that have been tested on human and mouse liver microsomes. The first South Korea Data Challenge, named the Jump AI Challenge for Drug Discovery (JUMP AI 2023), was opened using the metabolic stability data of KCB in 2023. The objective of the JUMP AI 2023 was to promote and encourage the development of new drugs using artificial intelligence (AI) technology in South Korea. A total of 1254 teams participated in the competition, developing algorithms to estimate the remaining percentage of compounds after 30 min of incubation with human and mouse liver microsomes. The data set comprised training and test sets of 3498 and 483 compounds, respectively. This paper provides an overview of the JUMP AI 2023 and its outcomes, highlighting the diverse range of algorithms and artificial intelligence technologies employed by the competing teams. Among these, five teams stood out by utilizing GNN-based approaches winning awards. This competition was the first AI competition for drug discovery in South Korea, attracting numerous researchers and playing a key role in promoting drug research through the application of artificial intelligence technologies.

韩国首个利用人和小鼠肝微粒体稳定性数据进行药物发现的数据挑战
韩国化学银行(KCB)制作了包含在人类和小鼠肝微粒体上测试的4000多种化合物的代谢稳定性数据的数据集。第一届韩国数据挑战赛名为Jump AI药物发现挑战赛(Jump AI 2023),于2023年利用KCB的代谢稳定性数据开启。JUMP AI 2023的目标是促进和鼓励利用人工智能(AI)技术在韩国开发新药。共有1254个团队参加了比赛,开发算法来估计人类和小鼠肝微粒体孵育30分钟后化合物的剩余百分比。数据集分别由3498个化合物的训练集和483个化合物的测试集组成。本文概述了JUMP AI 2023及其成果,重点介绍了参赛团队采用的各种算法和人工智能技术。其中,5个团队利用基于gnn的方法脱颖而出,获得了奖项。此次大赛是韩国首次举办药物研发人工智能大赛,吸引了众多研究人员,在通过应用人工智能技术促进药物研究方面发挥了关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信