MHT-Net: A Matching-Based Hierarchical Transfer Network for Glaucoma Detection From Fundus Images

IF 5.7 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Linna Zhao;Jianqiang Li;Li Li;Xi Xu
{"title":"MHT-Net: A Matching-Based Hierarchical Transfer Network for Glaucoma Detection From Fundus Images","authors":"Linna Zhao;Jianqiang Li;Li Li;Xi Xu","doi":"10.1109/TBDATA.2025.3552342","DOIUrl":null,"url":null,"abstract":"Glaucoma is a chronic and irreversible eye disease. Early detection and treatment can effectively prevent severe consequences. Deep transfer learning is widely used in fundus imaging analysis to remedy the shortage of training data of glaucoma. The model trained on the source domain may struggle to predict glaucoma in the target domain due to distribution differences. Several limitations cannot be ignored: (1) Image matching: enhancing global and local image consistency through bidirectional matching; (2) Hierarchical transfer: developing a strategy for transferring different hierarchical features. To this end, we propose a novel Matched Hierarchical Transfer Network (MHT-Net) to achieve automatic glaucoma detection. We initially create a fundus structure detector to match global and local images using intermediate layers of a pre-trained diagnostic model with source domain data. Next, a hierarchical transfer network is implemented, sharing parameters for general features and using a domain discriminator for specific features. By integrating adversarial and classification losses, the model acquires domain-invariant features, facilitating precise and seamless transfer of fundus information from source to target domains. Extensive experiments demonstrate the effectiveness of our proposed method, outperforming existing glaucoma detection methods. These advantages endow our algorithm as a promising efficient assisted tool in the glaucoma screening.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"11 5","pages":"2681-2695"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10930643/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Glaucoma is a chronic and irreversible eye disease. Early detection and treatment can effectively prevent severe consequences. Deep transfer learning is widely used in fundus imaging analysis to remedy the shortage of training data of glaucoma. The model trained on the source domain may struggle to predict glaucoma in the target domain due to distribution differences. Several limitations cannot be ignored: (1) Image matching: enhancing global and local image consistency through bidirectional matching; (2) Hierarchical transfer: developing a strategy for transferring different hierarchical features. To this end, we propose a novel Matched Hierarchical Transfer Network (MHT-Net) to achieve automatic glaucoma detection. We initially create a fundus structure detector to match global and local images using intermediate layers of a pre-trained diagnostic model with source domain data. Next, a hierarchical transfer network is implemented, sharing parameters for general features and using a domain discriminator for specific features. By integrating adversarial and classification losses, the model acquires domain-invariant features, facilitating precise and seamless transfer of fundus information from source to target domains. Extensive experiments demonstrate the effectiveness of our proposed method, outperforming existing glaucoma detection methods. These advantages endow our algorithm as a promising efficient assisted tool in the glaucoma screening.
MHT-Net:一种基于匹配的眼底图像青光眼检测分层转移网络
青光眼是一种慢性、不可逆的眼部疾病。早期发现和治疗可以有效预防严重后果。深度迁移学习被广泛应用于眼底成像分析,以弥补青光眼训练数据的不足。由于分布差异,在源域训练的模型可能难以预测目标域的青光眼。有几个局限性不能忽视:(1)图像匹配:通过双向匹配增强图像全局和局部一致性;(2)层次转移:制定不同层次特征的转移策略。为此,我们提出了一种新的匹配分层传输网络(MHT-Net)来实现青光眼的自动检测。我们首先创建了一个眼底结构检测器,使用预先训练的诊断模型的中间层与源域数据匹配全局和局部图像。其次,实现了一个分层传输网络,对一般特征共享参数,对特定特征使用域鉴别器。通过整合对抗损失和分类损失,该模型获得了域不变特征,实现了眼底信息从源域到目标域的精确无缝传输。大量的实验证明了我们提出的方法的有效性,优于现有的青光眼检测方法。这些优点使我们的算法在青光眼筛查中成为一种很有前景的高效辅助工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.80
自引率
2.80%
发文量
114
期刊介绍: The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信