Combining Contrastive Learning and Diffusion Model for Hyperspectral Image Classification

IF 4.4
Xiaorun Li;Jinhui Li;Shuhan Chen;Zeyu Cao
{"title":"Combining Contrastive Learning and Diffusion Model for Hyperspectral Image Classification","authors":"Xiaorun Li;Jinhui Li;Shuhan Chen;Zeyu Cao","doi":"10.1109/LGRS.2025.3601152","DOIUrl":null,"url":null,"abstract":"In recent years, self-supervised learning has made significant strides in hyperspectral image classification (HSIC). However, different approaches come with distinct strengths and limitations. Contrastive learning excels at extracting key information from large volumes of redundant data, but its training objective can inadvertently increase intraclass feature distance. To address this limitation, we leverage diffusion models (DMs) for their proven ability to refine and aggregate features by modeling complex data distributions. Specifically, DMs’ inherent denoising and generative processes are theoretically well-suited to enhance intraclass compactness by learning to reconstruct clean, representative features from perturbed inputs. We propose the new method—ContrastDM. This approach generates synthetic features, improving and enriching feature representation, and partially addressing the issue of sample sparsity. Classification experiments on three publicly available datasets demonstrate that ContrastDM significantly outperforms state-of-the-art methods.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11133435/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, self-supervised learning has made significant strides in hyperspectral image classification (HSIC). However, different approaches come with distinct strengths and limitations. Contrastive learning excels at extracting key information from large volumes of redundant data, but its training objective can inadvertently increase intraclass feature distance. To address this limitation, we leverage diffusion models (DMs) for their proven ability to refine and aggregate features by modeling complex data distributions. Specifically, DMs’ inherent denoising and generative processes are theoretically well-suited to enhance intraclass compactness by learning to reconstruct clean, representative features from perturbed inputs. We propose the new method—ContrastDM. This approach generates synthetic features, improving and enriching feature representation, and partially addressing the issue of sample sparsity. Classification experiments on three publicly available datasets demonstrate that ContrastDM significantly outperforms state-of-the-art methods.
结合对比学习和扩散模型的高光谱图像分类
近年来,自监督学习在高光谱图像分类(HSIC)领域取得了重大进展。然而,不同的方法有不同的优点和局限性。对比学习擅长于从大量冗余数据中提取关键信息,但其训练目标可能会不经意地增加类内特征距离。为了解决这一限制,我们利用扩散模型(dm),因为它具有通过对复杂数据分布建模来细化和聚合特征的成熟能力。具体来说,dm的固有去噪和生成过程在理论上非常适合通过学习从扰动输入中重建干净的、具有代表性的特征来增强类内紧密性。我们提出了一种新的方法- contrastdm。该方法生成了合成特征,改进和丰富了特征表示,部分解决了样本稀疏性问题。在三个公开可用的数据集上进行的分类实验表明,ContrastDM显著优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信