Aerial Image Semantic Segmentation Method Based on Cross-Modal Hierarchical Feature Fusion

IF 4.4
Jinglei Bai;Jinfu Yang;Tao Xiang;Shu Cai
{"title":"Aerial Image Semantic Segmentation Method Based on Cross-Modal Hierarchical Feature Fusion","authors":"Jinglei Bai;Jinfu Yang;Tao Xiang;Shu Cai","doi":"10.1109/LGRS.2025.3602267","DOIUrl":null,"url":null,"abstract":"Multimodal aerial image semantic segmentation enables fine-grained land cover classification by integrating data from different sensors, yet it remains challenged by information redundancy, intermodal feature discrepancies, and class confusion in complex scenes. To address these issues, we propose a cross-modal hierarchical feature fusion network (CMHFNet) based on an encoder–decoder architecture. The encoder incorporates a pixelwise attention-guided fusion module (PAFM) and a multistage progressive fusion transformer (MPFT) to suppress redundancy and model long-range intermodal dependencies and scale variations. The decoder introduces a residual information-guided feature compensation mechanism to recover spatial details and mitigate class ambiguity. The experiments on DDOS, Vaihingen, and Potsdam datasets demonstrate that the CMHFNet surpasses state-of-the-art methods, validating its effectiveness and practical value.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11137359/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multimodal aerial image semantic segmentation enables fine-grained land cover classification by integrating data from different sensors, yet it remains challenged by information redundancy, intermodal feature discrepancies, and class confusion in complex scenes. To address these issues, we propose a cross-modal hierarchical feature fusion network (CMHFNet) based on an encoder–decoder architecture. The encoder incorporates a pixelwise attention-guided fusion module (PAFM) and a multistage progressive fusion transformer (MPFT) to suppress redundancy and model long-range intermodal dependencies and scale variations. The decoder introduces a residual information-guided feature compensation mechanism to recover spatial details and mitigate class ambiguity. The experiments on DDOS, Vaihingen, and Potsdam datasets demonstrate that the CMHFNet surpasses state-of-the-art methods, validating its effectiveness and practical value.
基于跨模态层次特征融合的航空图像语义分割方法
多模态航空图像语义分割通过整合不同传感器的数据实现了细粒度的土地覆盖分类,但在复杂场景中仍然存在信息冗余、多模态特征差异和类混淆等问题。为了解决这些问题,我们提出了一种基于编码器-解码器架构的跨模态分层特征融合网络(CMHFNet)。该编码器集成了一个像素级注意力引导融合模块(PAFM)和一个多级渐进融合变压器(MPFT),以抑制冗余并模拟远程多式联运依赖性和规模变化。该解码器引入残差信息导向的特征补偿机制来恢复空间细节,减轻类模糊。在DDOS、Vaihingen和Potsdam数据集上的实验表明,CMHFNet超越了最先进的方法,验证了其有效性和实用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信