Towards evidence-aware retrieval-augmented generation via self-corrective chain-of-thought

IF 6.9 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yining Li , Wenjun Ke , Jiajun Liu , Peng Wang , Jianghan Liu , Yao He
{"title":"Towards evidence-aware retrieval-augmented generation via self-corrective chain-of-thought","authors":"Yining Li ,&nbsp;Wenjun Ke ,&nbsp;Jiajun Liu ,&nbsp;Peng Wang ,&nbsp;Jianghan Liu ,&nbsp;Yao He","doi":"10.1016/j.ipm.2025.104369","DOIUrl":null,"url":null,"abstract":"<div><div>To address challenges in reconciling static internal knowledge of large language models (LLMs) with dynamic external information without sacrificing inference efficiency, we propose SC-RAG (self-corrective retrieval-augmented generation). This novel framework introduces evidence extraction using a hybrid retriever (combining semantic and unsupervised aspect-based retrieval for enhanced knowledge quality) and an evidence-aware self-correction mechanism via chain-of-thought (CoT) to activate relevant internal LLM knowledge. Experiments conducted on the LaMP (comprising a total of 7 datasets and 144k samples) and HotpotQA (comprising 113k samples) benchmarks demonstrate that SC-RAG significantly outperforms current state-of-the-art methods by 1.0% to 30.3% across various evaluation metrics. Furthermore, SC-RAG achieves these improvements while concurrently reducing inference time by up to 14.3%, offering a more efficient and accurate solution for retrieval-augmented generation.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"63 2","pages":"Article 104369"},"PeriodicalIF":6.9000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457325003103","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

To address challenges in reconciling static internal knowledge of large language models (LLMs) with dynamic external information without sacrificing inference efficiency, we propose SC-RAG (self-corrective retrieval-augmented generation). This novel framework introduces evidence extraction using a hybrid retriever (combining semantic and unsupervised aspect-based retrieval for enhanced knowledge quality) and an evidence-aware self-correction mechanism via chain-of-thought (CoT) to activate relevant internal LLM knowledge. Experiments conducted on the LaMP (comprising a total of 7 datasets and 144k samples) and HotpotQA (comprising 113k samples) benchmarks demonstrate that SC-RAG significantly outperforms current state-of-the-art methods by 1.0% to 30.3% across various evaluation metrics. Furthermore, SC-RAG achieves these improvements while concurrently reducing inference time by up to 14.3%, offering a more efficient and accurate solution for retrieval-augmented generation.
通过自我纠正思维链走向循证检索增强一代
为了解决在不牺牲推理效率的情况下协调大型语言模型(llm)的静态内部知识与动态外部信息的挑战,我们提出了SC-RAG(自我纠正检索-增强生成)。这个新框架引入了使用混合检索器(结合语义和无监督的基于方面的检索以提高知识质量)和通过思维链(CoT)的证据感知自我纠正机制来激活相关内部法学硕士知识的证据提取。在LaMP(共包含7个数据集和144k样本)和HotpotQA(包含113k样本)基准测试上进行的实验表明,SC-RAG在各种评估指标上显著优于当前最先进的方法1.0%至30.3%。此外,SC-RAG实现了这些改进,同时减少了高达14.3%的推理时间,为检索增强生成提供了更高效、更准确的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信