{"title":"Ideal magnetohydrodynamics around couette flow: Long time stability and vorticity–current instability","authors":"Niklas Knobel","doi":"10.1016/j.na.2025.113937","DOIUrl":null,"url":null,"abstract":"<div><div>This article considers the ideal 2D magnetohydrodynamic equations in a infinite periodic channel close to a combination of an affine shear flow, called Couette flow, and a constant magnetic field. This incorporates important physical effects, including mixing and coupling of velocity and magnetic field. We establish the existence and stability of the velocity and magnetic field for Gevrey-class perturbations of size <span><math><mi>ɛ</mi></math></span>, valid up to times <span><math><mrow><mi>t</mi><mo>∼</mo><msup><mrow><mi>ɛ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>. Additionally, the vorticity and current grow as <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> and there is no inviscid damping of the velocity and magnetic field. This is similar to the above threshold case for the <span><math><mrow><mn>3</mn><mi>D</mi></mrow></math></span> Navier–Stokes (Jacob Bedrossian et al., 2022) where growth in ‘streaks’ leads to time scales of <span><math><mrow><mi>t</mi><mo>∼</mo><msup><mrow><mi>ɛ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>. In particular, for the ideal MHD equations, our article suggests that for a wide range of initial data, the scenario “induction by shear <span><math><mo>⇒</mo></math></span> vorticity and current growth <span><math><mo>⇒</mo></math></span> vorticity and current breakdown” leads to instability and possible turbulences.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"262 ","pages":"Article 113937"},"PeriodicalIF":1.3000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001890","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This article considers the ideal 2D magnetohydrodynamic equations in a infinite periodic channel close to a combination of an affine shear flow, called Couette flow, and a constant magnetic field. This incorporates important physical effects, including mixing and coupling of velocity and magnetic field. We establish the existence and stability of the velocity and magnetic field for Gevrey-class perturbations of size , valid up to times . Additionally, the vorticity and current grow as and there is no inviscid damping of the velocity and magnetic field. This is similar to the above threshold case for the Navier–Stokes (Jacob Bedrossian et al., 2022) where growth in ‘streaks’ leads to time scales of . In particular, for the ideal MHD equations, our article suggests that for a wide range of initial data, the scenario “induction by shear vorticity and current growth vorticity and current breakdown” leads to instability and possible turbulences.
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.