{"title":"Singular velocity of the Stokes and Navier–Stokes equations near boundary in the half-space","authors":"Tongkeun Chang, Kyungkeun Kang","doi":"10.1016/j.na.2025.113939","DOIUrl":null,"url":null,"abstract":"<div><div>Local behavior near the boundary is analyzed for solutions of the Stokes and Navier–Stokes equations in the half space with localized non-smooth boundary data. We construct solutions to the Stokes equations whose velocity fields are unbounded near the boundary away from the support of boundary data, although the velocity and its gradient of solutions are locally square integrable. This is an improvement compared to known results in the sense that the velocity field itself is unbounded, since previously constructed solutions were bounded near the boundary, although their normal derivatives are singular. We also establish singular solutions and their derivatives that do not belong to <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>loc</mi></mrow><mrow><mi>q</mi></mrow></msubsup></math></span> near the boundary for <span><math><mrow><mi>q</mi><mo>></mo><mn>1</mn></mrow></math></span>. For such examples, the corresponding pressures turn out not to be locally integrable. A similar construction, via a perturbation argument, is available to the Navier–Stokes equations near the boundary as well.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"262 ","pages":"Article 113939"},"PeriodicalIF":1.3000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001919","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Local behavior near the boundary is analyzed for solutions of the Stokes and Navier–Stokes equations in the half space with localized non-smooth boundary data. We construct solutions to the Stokes equations whose velocity fields are unbounded near the boundary away from the support of boundary data, although the velocity and its gradient of solutions are locally square integrable. This is an improvement compared to known results in the sense that the velocity field itself is unbounded, since previously constructed solutions were bounded near the boundary, although their normal derivatives are singular. We also establish singular solutions and their derivatives that do not belong to near the boundary for . For such examples, the corresponding pressures turn out not to be locally integrable. A similar construction, via a perturbation argument, is available to the Navier–Stokes equations near the boundary as well.
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.