Concave foliated flag structures and the SL3(R) Hitchin component

IF 1.5 1区 数学 Q1 MATHEMATICS
Alexander Nolte, J. Maxwell Riestenberg
{"title":"Concave foliated flag structures and the SL3(R) Hitchin component","authors":"Alexander Nolte,&nbsp;J. Maxwell Riestenberg","doi":"10.1016/j.aim.2025.110504","DOIUrl":null,"url":null,"abstract":"<div><div>We give a geometric characterization of flag geometries associated to Hitchin representations in <span><math><msub><mrow><mi>SL</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. Our characterization is based on distinguished invariant foliations, similar to those studied by Guichard-Wienhard in <span><math><msub><mrow><mi>PSL</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>.</div><div>We connect to the dynamics of Hitchin representations by constructing refraction flows for all positive roots in general <span><math><msub><mrow><mi>sl</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> in our setting. One consequence is that the highest root flows are <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>+</mo><mi>α</mi></mrow></msup></math></span>. For <span><math><mi>n</mi><mo>=</mo><mn>3</mn></math></span>, leaves of our one-dimensional foliations are flow-lines.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"480 ","pages":"Article 110504"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825004025","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We give a geometric characterization of flag geometries associated to Hitchin representations in SL3(R). Our characterization is based on distinguished invariant foliations, similar to those studied by Guichard-Wienhard in PSL4(R).
We connect to the dynamics of Hitchin representations by constructing refraction flows for all positive roots in general sln(R) in our setting. One consequence is that the highest root flows are C1+α. For n=3, leaves of our one-dimensional foliations are flow-lines.
凹叶面旗结构和SL3(R) Hitchin分量
我们给出了SL3(R)中与Hitchin表示相关的标志几何的几何表征。我们的特征是基于区分不变叶理,类似于Guichard-Wienhard在PSL4(R)中研究的那些。在我们的设置中,我们通过构造一般sln(R)中所有正根的折射流来连接到希钦表示的动力学。一个结果是最高的根流是C1+α。当n=3时,一维叶的叶子是流线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信