On decompositions for Fano schemes of intersections of two quadrics

IF 1.5 1区 数学 Q1 MATHEMATICS
Pieter Belmans , Jishnu Bose , Sarah Frei , Benjamin Gould , James Hotchkiss , Alicia Lamarche , Jack Petok , Cristian Rodriguez Avila , Saket Shah
{"title":"On decompositions for Fano schemes of intersections of two quadrics","authors":"Pieter Belmans ,&nbsp;Jishnu Bose ,&nbsp;Sarah Frei ,&nbsp;Benjamin Gould ,&nbsp;James Hotchkiss ,&nbsp;Alicia Lamarche ,&nbsp;Jack Petok ,&nbsp;Cristian Rodriguez Avila ,&nbsp;Saket Shah","doi":"10.1016/j.aim.2025.110506","DOIUrl":null,"url":null,"abstract":"<div><div>We propose conjectural semiorthogonal decompositions for Fano schemes of linear subspaces on intersections of two quadrics, in terms of symmetric powers of the associated hyperelliptic (resp. stacky) curve. When the intersection is odd-dimensional, we moreover conjecture an identity in the Grothendieck ring of varieties and other motivic contexts. The evidence for these conjectures is given by upgrading recent results of Chen–Vilonen–Xue, to obtain formulae for the Hodge numbers of these Fano schemes. This allows us to numerically verify the conjecture in the hyperelliptic case, and establish a combinatorial identity as evidence for the stacky case.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"480 ","pages":"Article 110506"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825004049","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose conjectural semiorthogonal decompositions for Fano schemes of linear subspaces on intersections of two quadrics, in terms of symmetric powers of the associated hyperelliptic (resp. stacky) curve. When the intersection is odd-dimensional, we moreover conjecture an identity in the Grothendieck ring of varieties and other motivic contexts. The evidence for these conjectures is given by upgrading recent results of Chen–Vilonen–Xue, to obtain formulae for the Hodge numbers of these Fano schemes. This allows us to numerically verify the conjecture in the hyperelliptic case, and establish a combinatorial identity as evidence for the stacky case.
两个二次曲面交点的Fano格式的分解
我们提出了两个二次曲面交点上线性子空间的Fano格式的推测半正交分解,并给出了相关超椭圆的对称幂。stacky)曲线。当交点为奇维时,我们进一步在格罗滕迪克环和其他动机背景下推测出一个恒等式。这些猜想的证据是通过升级Chen-Vilonen-Xue最近的结果来得到这些Fano格式的Hodge数的公式。这允许我们在数值上验证超椭圆情况下的猜想,并建立一个组合恒等式作为堆栈情况的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信