Analysis of the stability of frames composed of thin-walled beams with open cross-section using a High Order Continuation Method

IF 3.5 3区 工程技术 Q1 MATHEMATICS, APPLIED
Zaenab Bakhach , Bouazza Braikat , Abdellah Hamdaoui , Noureddine Damil
{"title":"Analysis of the stability of frames composed of thin-walled beams with open cross-section using a High Order Continuation Method","authors":"Zaenab Bakhach ,&nbsp;Bouazza Braikat ,&nbsp;Abdellah Hamdaoui ,&nbsp;Noureddine Damil","doi":"10.1016/j.finel.2025.104437","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents the numerical modeling of frames composed of thin-walled beams with open cross-section subjected to large torsions by a High Order Continuation Method (HOCM), based on Asymptotic Numerical Method (ANM) techniques. The theoretical model is developed using <span><math><mrow><mn>3</mn><mi>D</mi></mrow></math></span> beam kinematics, which accounts for flexion-torsion coupling and large rotations. The connection between beams is ensured by joints (stiffening plates) to avoid local deformations, mathematically modeled by compatibility conditions applied to the connection nodes. The equilibrium equations are established using the minimization of the Lagrangian. Discretization is performed with a two-node beam element having seven degrees of freedom per node. The transformation from local to global reference frames is done using Euler angles for the first six degrees of freedom, while the transformation of the seventh degree of freedom is related to the transmission of warping between elements. The equilibrium equations are solved using a HOCM. Tested examples of frames of thin-walled beams with open cross-section subjected to different loadings and boundary conditions are investigated. The obtained results are compared with those calculated by the commercial software ABAQUS and with those from the literature.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"251 ","pages":"Article 104437"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X2500126X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents the numerical modeling of frames composed of thin-walled beams with open cross-section subjected to large torsions by a High Order Continuation Method (HOCM), based on Asymptotic Numerical Method (ANM) techniques. The theoretical model is developed using 3D beam kinematics, which accounts for flexion-torsion coupling and large rotations. The connection between beams is ensured by joints (stiffening plates) to avoid local deformations, mathematically modeled by compatibility conditions applied to the connection nodes. The equilibrium equations are established using the minimization of the Lagrangian. Discretization is performed with a two-node beam element having seven degrees of freedom per node. The transformation from local to global reference frames is done using Euler angles for the first six degrees of freedom, while the transformation of the seventh degree of freedom is related to the transmission of warping between elements. The equilibrium equations are solved using a HOCM. Tested examples of frames of thin-walled beams with open cross-section subjected to different loadings and boundary conditions are investigated. The obtained results are compared with those calculated by the commercial software ABAQUS and with those from the literature.
用高阶延拓法分析开截面薄壁梁框架的稳定性
本文采用基于渐近数值方法(ANM)的高阶延拓方法(HOCM)对受大扭转作用的薄壁梁框架进行了数值模拟。利用三维梁运动学建立理论模型,考虑了挠曲-扭转耦合和大旋转。梁之间的连接由节点(加强板)保证,以避免局部变形,通过应用于连接节点的协调条件进行数学建模。利用拉格朗日量的最小化建立了平衡方程。离散化是用每个节点有七个自由度的双节点梁单元进行的。前6个自由度的局部参照系到全局参照系的转换是利用欧拉角实现的,而第7个自由度的转换则涉及到元件间翘曲的传递。利用HOCM求解了平衡方程。对开截面薄壁梁框架在不同荷载和边界条件下的试验实例进行了研究。所得结果与商业软件ABAQUS计算结果及文献结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
3.20%
发文量
92
审稿时长
27 days
期刊介绍: The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信