Porhouy Minh, Steven W. Hall, Ryan S. DeFever and Sapna Sarupria*,
{"title":"Crystal Nucleation Kinetics and Mechanism: Influence of Interaction Potential","authors":"Porhouy Minh, Steven W. Hall, Ryan S. DeFever and Sapna Sarupria*, ","doi":"10.1021/acs.jpcb.5c04269","DOIUrl":null,"url":null,"abstract":"<p >Modulating liquid-to-solid transitions and the resulting crystalline structure for tailored properties is much desired. Colloidal systems are exemplary to this end, but the fundamental knowledge gaps in relating the influence of intermolecular interactions to crystallization behavior continue to hinder progress. In this study, we address this knowledge gap by studying nucleation and growth in systems with modified Lennard-Jones potential. Specifically, we study the commonly used 12-6 potential and a softer 7-6 potential. The thermodynamic state point for the study is chosen such that both systems are investigated at the same level of supercooling and pressure. Under these conditions, we find that the nucleation rate for both systems is comparable. Interestingly, the nucleation pathways and resulting crystal structures are different. In the 12-6 system, nucleation and growth occur predominantly through the FCC structure. Softening the potential alters the critical nucleus composition and introduces two distinct nucleation pathways. One pathway predominantly leads to the nucleus with a body-centered cubic (BCC) structure, while the other favors the face-centered cubic (FCC) arrangement. Our study illustrates that polymorph selection can be achieved through modifications to intermolecular interactions without impacting nucleation kinetics. The results have significant implications in designing approaches for polymorph selection and modulating self-assembly mechanisms.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":"129 35","pages":"8976–8990"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcb.5c04269","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Modulating liquid-to-solid transitions and the resulting crystalline structure for tailored properties is much desired. Colloidal systems are exemplary to this end, but the fundamental knowledge gaps in relating the influence of intermolecular interactions to crystallization behavior continue to hinder progress. In this study, we address this knowledge gap by studying nucleation and growth in systems with modified Lennard-Jones potential. Specifically, we study the commonly used 12-6 potential and a softer 7-6 potential. The thermodynamic state point for the study is chosen such that both systems are investigated at the same level of supercooling and pressure. Under these conditions, we find that the nucleation rate for both systems is comparable. Interestingly, the nucleation pathways and resulting crystal structures are different. In the 12-6 system, nucleation and growth occur predominantly through the FCC structure. Softening the potential alters the critical nucleus composition and introduces two distinct nucleation pathways. One pathway predominantly leads to the nucleus with a body-centered cubic (BCC) structure, while the other favors the face-centered cubic (FCC) arrangement. Our study illustrates that polymorph selection can be achieved through modifications to intermolecular interactions without impacting nucleation kinetics. The results have significant implications in designing approaches for polymorph selection and modulating self-assembly mechanisms.
期刊介绍:
An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.