Photoionization Cross‐Section in Tetrapod Quantum Dots: Impact of Pressure, Temperature, and Polarization Direction

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
A. Ed‐Dahmouny, H. M. Althib, A. Alkhaldi, A. El Kharrim, M. Jaouane, R. Arraoui, A. Fakkahi, N. Zeiri, A. Sali, C. A. Duque
{"title":"Photoionization Cross‐Section in Tetrapod Quantum Dots: Impact of Pressure, Temperature, and Polarization Direction","authors":"A. Ed‐Dahmouny, H. M. Althib, A. Alkhaldi, A. El Kharrim, M. Jaouane, R. Arraoui, A. Fakkahi, N. Zeiri, A. Sali, C. A. Duque","doi":"10.1002/adts.202501286","DOIUrl":null,"url":null,"abstract":"This study investigates the photoionization cross‐section (PCS) in GaAs‐Ga<jats:sub>0.7</jats:sub>Al<jats:sub>0.3</jats:sub>As core–shell tetrapod quantum dot (CSTQD), elucidating its dependence on temperature, hydrostatic pressure, and polarization direction of incoming light. The intrinsic asymmetry of these nanostructures breaks rotational symmetry, rendering polarization dependence a critical parameter. Utilizing a theoretical framework rooted in the effective mass approximation (EMA) and numerical simulations performed with the finite element method (FEM), the electronic states are rigorously analyzed. The analysis extends to their influence on the binding energies (BEs) of the ground and first excited states, alongside the spatial distribution of electron probability densities within the nanostructure. Subsequently, the PCS variation across a range of pressures, temperatures, polarization directions, and impurity positions is systematically examined. The findings reveal that elevated temperature and pressure profoundly impact both the energy levels and the PCS for the two transitions under investigation. Specifically, the PCS undergoes a discernible blue shift (toward higher energies) with increasing pressure. Crucially, the PCS exhibits pronounced anisotropy concerning the polarization angle. This directional sensitivity underscores promising applications in polarization‐selective optoelectronic devices and provides fundamental insights for the precise tuning of quantum dot‐based photodetectors and sensors.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"32 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202501286","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the photoionization cross‐section (PCS) in GaAs‐Ga0.7Al0.3As core–shell tetrapod quantum dot (CSTQD), elucidating its dependence on temperature, hydrostatic pressure, and polarization direction of incoming light. The intrinsic asymmetry of these nanostructures breaks rotational symmetry, rendering polarization dependence a critical parameter. Utilizing a theoretical framework rooted in the effective mass approximation (EMA) and numerical simulations performed with the finite element method (FEM), the electronic states are rigorously analyzed. The analysis extends to their influence on the binding energies (BEs) of the ground and first excited states, alongside the spatial distribution of electron probability densities within the nanostructure. Subsequently, the PCS variation across a range of pressures, temperatures, polarization directions, and impurity positions is systematically examined. The findings reveal that elevated temperature and pressure profoundly impact both the energy levels and the PCS for the two transitions under investigation. Specifically, the PCS undergoes a discernible blue shift (toward higher energies) with increasing pressure. Crucially, the PCS exhibits pronounced anisotropy concerning the polarization angle. This directional sensitivity underscores promising applications in polarization‐selective optoelectronic devices and provides fundamental insights for the precise tuning of quantum dot‐based photodetectors and sensors.
四足量子点的光电离截面:压力、温度和极化方向的影响
本文研究了GaAs‐Ga0.7Al0.3As核壳四足量子点(CSTQD)的光电离截面(PCS),阐明了其与温度、静水压力和入射光偏振方向的关系。这些纳米结构固有的不对称性打破了旋转对称性,使得偏振依赖性成为一个关键参数。利用基于有效质量近似(EMA)的理论框架和有限元法(FEM)的数值模拟,对电子态进行了严格的分析。分析扩展到它们对基态和第一激发态结合能(BEs)的影响,以及纳米结构内电子概率密度的空间分布。随后,系统地检查了PCS在压力、温度、极化方向和杂质位置范围内的变化。研究结果表明,温度和压力的升高对两种转变的能级和PCS都产生了深刻的影响。具体来说,PCS会随着压力的增加而发生明显的蓝移(朝向更高的能量)。关键是,PCS在偏振角方面表现出明显的各向异性。这种定向灵敏度强调了在偏振选择光电器件中的有前途的应用,并为基于量子点的光电探测器和传感器的精确调谐提供了基本的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信