{"title":"Exploring redox behavior of mixed manganese‒cobalt spinel oxides through in situ analysis","authors":"Christabel Adjah-Tetteh, Kayla S. Smith, Zizhou He, Yudong Wang, Nengneng Xu, Xiao-Dong Zhou","doi":"10.1111/jace.70103","DOIUrl":null,"url":null,"abstract":"<p>Investigating the redox behavior of manganese‒cobalt spinel oxides is essential for optimizing their electrical, catalytic, and electrochemical properties that depend on the oxidation states of Mn and Co ions. In this work, we investigated a series of Mn<i><sub>x</sub></i>Co<sub>3‒</sub><i><sub>x</sub></i>O<sub>4</sub> (MCO, <i>x</i> = 0‒3) through in situ thermogravimetric and structural analysis to evaluate how the MCO composition affects structure, phase evolution, and redox transition temperatures. Reduction in MCO proceeds via two steps whereas reoxidation of the reduction products (MnO and Co) commonly occurs in a single step. Manganese is seen to reduce the reoxidation temperatures - the spinel peak was first evident at 300°C for x = 2.4 whereas that of x = 0.6 appeared at 400°C . Cobalt- and manganese-rich contents (<i>x</i> = 0.6 and 2.4) gave rise to CoO and Mn<sub>2</sub>O<sub>3</sub> secondary phases respectively during reoxidation. These secondary phases were first observed when the temperature reached 500°C, however, such phases diminished with increasing temperature, yielding a single phase at 800°C. In contrast, the mid-range composition (<i>x</i> = 1.8) yields single spinel phases at relatively lower temperatures. We also studied the relationship between composition and morphology of exsolved Co and MnO particles during reduction, which are of importance to catalytic applications. These findings can offer guidelines for designing MCO for catalytic and electrochemical applications.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"108 11","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://ceramics.onlinelibrary.wiley.com/doi/10.1111/jace.70103","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Investigating the redox behavior of manganese‒cobalt spinel oxides is essential for optimizing their electrical, catalytic, and electrochemical properties that depend on the oxidation states of Mn and Co ions. In this work, we investigated a series of MnxCo3‒xO4 (MCO, x = 0‒3) through in situ thermogravimetric and structural analysis to evaluate how the MCO composition affects structure, phase evolution, and redox transition temperatures. Reduction in MCO proceeds via two steps whereas reoxidation of the reduction products (MnO and Co) commonly occurs in a single step. Manganese is seen to reduce the reoxidation temperatures - the spinel peak was first evident at 300°C for x = 2.4 whereas that of x = 0.6 appeared at 400°C . Cobalt- and manganese-rich contents (x = 0.6 and 2.4) gave rise to CoO and Mn2O3 secondary phases respectively during reoxidation. These secondary phases were first observed when the temperature reached 500°C, however, such phases diminished with increasing temperature, yielding a single phase at 800°C. In contrast, the mid-range composition (x = 1.8) yields single spinel phases at relatively lower temperatures. We also studied the relationship between composition and morphology of exsolved Co and MnO particles during reduction, which are of importance to catalytic applications. These findings can offer guidelines for designing MCO for catalytic and electrochemical applications.
期刊介绍:
The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials.
Papers on fundamental ceramic and glass science are welcome including those in the following areas:
Enabling materials for grand challenges[...]
Materials design, selection, synthesis and processing methods[...]
Characterization of compositions, structures, defects, and properties along with new methods [...]
Mechanisms, Theory, Modeling, and Simulation[...]
JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.