{"title":"Finite-Agent Stochastic Differential Games on Large Graphs: I. The Linear-Quadratic Case","authors":"Ruimeng Hu, Jihao Long, Haosheng Zhou","doi":"10.1007/s00245-025-10309-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study finite-agent linear-quadratic games on graphs. Specifically, we propose a comprehensive framework that extends the existing literature by incorporating heterogeneous and interpretable player interactions. Compared to previous works, our model offers a more realistic depiction of strategic decision-making processes. For general graphs, we establish the convergence of fictitious play, a widely-used iterative solution method for determining the Nash equilibrium of our proposed game model. Notably, under appropriate conditions, this convergence holds true irrespective of the number of players involved. For vertex-transitive graphs, we develop a semi-explicit characterization of the Nash equilibrium. Through rigorous analysis, we demonstrate the well-posedness of this characterization under certain conditions. We present numerical experiments that validate our theoretical results and provide insights into the intricate relationship between various game dynamics and the underlying graph structure.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"92 2","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-025-10309-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study finite-agent linear-quadratic games on graphs. Specifically, we propose a comprehensive framework that extends the existing literature by incorporating heterogeneous and interpretable player interactions. Compared to previous works, our model offers a more realistic depiction of strategic decision-making processes. For general graphs, we establish the convergence of fictitious play, a widely-used iterative solution method for determining the Nash equilibrium of our proposed game model. Notably, under appropriate conditions, this convergence holds true irrespective of the number of players involved. For vertex-transitive graphs, we develop a semi-explicit characterization of the Nash equilibrium. Through rigorous analysis, we demonstrate the well-posedness of this characterization under certain conditions. We present numerical experiments that validate our theoretical results and provide insights into the intricate relationship between various game dynamics and the underlying graph structure.
期刊介绍:
The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.