Variationality of Conformal Geodesics in dimension 3

IF 1.6 3区 数学 Q1 MATHEMATICS
Boris Kruglikov, Vladimir S. Matveev, Wijnand Steneker
{"title":"Variationality of Conformal Geodesics in dimension 3","authors":"Boris Kruglikov,&nbsp;Vladimir S. Matveev,&nbsp;Wijnand Steneker","doi":"10.1007/s13324-025-01124-z","DOIUrl":null,"url":null,"abstract":"<div><p>Conformal geodesics form an invariantly defined family of unparametrized curves in a conformal manifold generalizing unparametrized geodesics/paths of projective connections. The equation describing them is of third order, and it was an open problem whether they are given by an Euler–Lagrange equation. In dimension 3 (the simplest, but most important from the viewpoint of physical applications) we demonstrate that the equation for unparametrized conformal geodesics is variational.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 5","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13324-025-01124-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01124-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Conformal geodesics form an invariantly defined family of unparametrized curves in a conformal manifold generalizing unparametrized geodesics/paths of projective connections. The equation describing them is of third order, and it was an open problem whether they are given by an Euler–Lagrange equation. In dimension 3 (the simplest, but most important from the viewpoint of physical applications) we demonstrate that the equation for unparametrized conformal geodesics is variational.

三维共形测地线的变分性
保形测地线在保形流形中形成了一个不变定义的非参数化曲线族,它推广了非参数化测地线/射影连接的路径。描述它们的方程是三阶的,它们是否由欧拉-拉格朗日方程给出是一个开放的问题。在第三维(最简单的,但从物理应用的角度来看最重要的),我们证明了非参数化共形测地线的方程是变分的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信