Boris Kruglikov, Vladimir S. Matveev, Wijnand Steneker
{"title":"Variationality of Conformal Geodesics in dimension 3","authors":"Boris Kruglikov, Vladimir S. Matveev, Wijnand Steneker","doi":"10.1007/s13324-025-01124-z","DOIUrl":null,"url":null,"abstract":"<div><p>Conformal geodesics form an invariantly defined family of unparametrized curves in a conformal manifold generalizing unparametrized geodesics/paths of projective connections. The equation describing them is of third order, and it was an open problem whether they are given by an Euler–Lagrange equation. In dimension 3 (the simplest, but most important from the viewpoint of physical applications) we demonstrate that the equation for unparametrized conformal geodesics is variational.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 5","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13324-025-01124-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01124-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Conformal geodesics form an invariantly defined family of unparametrized curves in a conformal manifold generalizing unparametrized geodesics/paths of projective connections. The equation describing them is of third order, and it was an open problem whether they are given by an Euler–Lagrange equation. In dimension 3 (the simplest, but most important from the viewpoint of physical applications) we demonstrate that the equation for unparametrized conformal geodesics is variational.
期刊介绍:
Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.