Spiking Variational Graph Representation Inference for Video Summarization

IF 13.7
Wenrui Li;Wei Han;Liang-Jian Deng;Ruiqin Xiong;Xiaopeng Fan
{"title":"Spiking Variational Graph Representation Inference for Video Summarization","authors":"Wenrui Li;Wei Han;Liang-Jian Deng;Ruiqin Xiong;Xiaopeng Fan","doi":"10.1109/TIP.2025.3602649","DOIUrl":null,"url":null,"abstract":"With the rise of short video content, efficient video summarization techniques for extracting key information have become crucial. However, existing methods struggle to capture the global temporal dependencies and maintain the semantic coherence of video content. Additionally, these methods are also influenced by noise during multi-channel feature fusion. We propose a Spiking Variational Graph (SpiVG) Network, which enhances information density and reduces computational complexity. First, we design a keyframe extractor based on Spiking Neural Networks (SNN), leveraging the event-driven computation mechanism of SNNs to learn keyframe features autonomously. To enable fine-grained and adaptable reasoning across video frames, we introduce a Dynamic Aggregation Graph Reasoner, which decouples contextual object consistency from semantic perspective coherence. We present a Variational Inference Reconstruction Module to address uncertainty and noise arising during multi-channel feature fusion. In this module, we employ Evidence Lower Bound Optimization (ELBO) to capture the latent structure of multi-channel feature distributions, using posterior distribution regularization to reduce overfitting. Experimental results show that SpiVG surpasses existing methods across multiple datasets such as SumMe, TVSum, VideoXum, and QFVS. Our codes and pre-trained models are available at <uri>https://github.com/liwrui/SpiVG</uri>","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"5697-5709"},"PeriodicalIF":13.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11146420/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the rise of short video content, efficient video summarization techniques for extracting key information have become crucial. However, existing methods struggle to capture the global temporal dependencies and maintain the semantic coherence of video content. Additionally, these methods are also influenced by noise during multi-channel feature fusion. We propose a Spiking Variational Graph (SpiVG) Network, which enhances information density and reduces computational complexity. First, we design a keyframe extractor based on Spiking Neural Networks (SNN), leveraging the event-driven computation mechanism of SNNs to learn keyframe features autonomously. To enable fine-grained and adaptable reasoning across video frames, we introduce a Dynamic Aggregation Graph Reasoner, which decouples contextual object consistency from semantic perspective coherence. We present a Variational Inference Reconstruction Module to address uncertainty and noise arising during multi-channel feature fusion. In this module, we employ Evidence Lower Bound Optimization (ELBO) to capture the latent structure of multi-channel feature distributions, using posterior distribution regularization to reduce overfitting. Experimental results show that SpiVG surpasses existing methods across multiple datasets such as SumMe, TVSum, VideoXum, and QFVS. Our codes and pre-trained models are available at https://github.com/liwrui/SpiVG
视频摘要的峰值变分图表示推理
随着短视频内容的兴起,高效的视频摘要技术提取关键信息变得至关重要。然而,现有的方法难以捕获全局时间依赖性并保持视频内容的语义一致性。此外,这些方法在多通道特征融合过程中还会受到噪声的影响。我们提出了一个峰值变分图(spiivg)网络,它提高了信息密度,降低了计算复杂度。首先,我们设计了一个基于峰值神经网络(SNN)的关键帧提取器,利用SNN的事件驱动计算机制自主学习关键帧特征。为了实现跨视频帧的细粒度和适应性推理,我们引入了一个动态聚合图推理器,它将上下文对象一致性与语义一致性解耦。我们提出了一个变分推理重构模块来解决多通道特征融合过程中产生的不确定性和噪声。在这个模块中,我们使用证据下界优化(ELBO)来捕获多通道特征分布的潜在结构,使用后验分布正则化来减少过拟合。实验结果表明,SpiVG在SumMe、TVSum、VideoXum和QFVS等多个数据集上都优于现有的方法。我们的代码和预训练模型可在https://github.com/liwrui/SpiVG上获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信