Structural and spectral analysis of Fibonacci graphs and their zagreb indices

IF 0.7 Q2 MATHEMATICS
Yasir Bashir, Bilal A. Chat
{"title":"Structural and spectral analysis of Fibonacci graphs and their zagreb indices","authors":"Yasir Bashir,&nbsp;Bilal A. Chat","doi":"10.1007/s13370-025-01373-y","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores the relationship between a specific type of graph and the Fibonacci sequence by introducing and analyzing the Fibonacci numbers graph, denoted as <span>\\(G_{f_n}\\)</span>. We delve into the structural properties of <span>\\(G_{f_n}\\)</span> and establish new bounds for the first Zagreb index <span>\\(M_1(G_{f_n})\\)</span>, relating it to the number of vertices <i>n</i>, the number of edges <i>m</i>, the maximum vertex degree <span>\\(\\Delta\\)</span>, the minimum vertex degree <span>\\(\\delta\\)</span>, and the clique number <span>\\(\\omega\\)</span>. Additionally, we investigate the domination number specific to Fibonacci graphs. Furthermore, we introduce two matrices: the equi-degree Laplacian matrix and the equi-degree signless Laplacian matrix, and examine their spectral characteristics to gain deeper insights into the eigenvalues of these matrices associated with connected graphs corresponding to Fibonacci numbers. This research not only broadens the theoretical understanding of Fibonacci graphs but also contributes to the field of algebraic graph theory by examining these new matrices.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 3","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01373-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the relationship between a specific type of graph and the Fibonacci sequence by introducing and analyzing the Fibonacci numbers graph, denoted as \(G_{f_n}\). We delve into the structural properties of \(G_{f_n}\) and establish new bounds for the first Zagreb index \(M_1(G_{f_n})\), relating it to the number of vertices n, the number of edges m, the maximum vertex degree \(\Delta\), the minimum vertex degree \(\delta\), and the clique number \(\omega\). Additionally, we investigate the domination number specific to Fibonacci graphs. Furthermore, we introduce two matrices: the equi-degree Laplacian matrix and the equi-degree signless Laplacian matrix, and examine their spectral characteristics to gain deeper insights into the eigenvalues of these matrices associated with connected graphs corresponding to Fibonacci numbers. This research not only broadens the theoretical understanding of Fibonacci graphs but also contributes to the field of algebraic graph theory by examining these new matrices.

斐波那契图的结构和谱分析及其萨格勒布指数
本研究通过引入和分析斐波那契数列图(表示为\(G_{f_n}\))来探讨特定类型的图与斐波那契数列之间的关系。我们深入研究了\(G_{f_n}\)的结构特性,并为第一个Zagreb索引\(M_1(G_{f_n})\)建立了新的界限,将其与顶点数n、边数m、最大顶点度\(\Delta\)、最小顶点度\(\delta\)和团数\(\omega\)联系起来。此外,我们研究了特定于斐波那契图的支配数。此外,我们引入了两种矩阵:等度拉普拉斯矩阵和等度无符号拉普拉斯矩阵,并研究了它们的谱特征,以更深入地了解这些矩阵与Fibonacci数对应的连通图相关的特征值。本研究不仅拓宽了对斐波那契图的理论认识,而且通过对这些新矩阵的研究,对代数图论领域做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信