{"title":"Nonlinear Cauchy Elasticity","authors":"Arash Yavari, Alain Goriely","doi":"10.1007/s00205-025-02120-0","DOIUrl":null,"url":null,"abstract":"<div><p>Most theories and applications of elasticity rely on an energy function that depends on the strains from which the stresses can be derived. This is the traditional setting of Green elasticity, also known as hyper-elasticity. However, in its original form the theory of elasticity does not assume the existence of a strain energy function. In this case, called Cauchy elasticity, stresses are directly related to the strains. Since the emergence of modern elasticity in the 1940s, research on Cauchy elasticity has been relatively limited. One possible reason for this is that for Cauchy materials, the net work performed by stress along a closed path in the strain space may be nonzero. Therefore, such materials may require access to both energy sources and sinks. This characteristic has led some mechanicians to question the viability of Cauchy elasticity as a physically plausible theory of elasticity. In this paper, motivated by its relevance to recent applications, such as the modeling of active solids, we revisit Cauchy elasticity in a modern form. First, we show that in the general theory of anisotropic Cauchy elasticity, stress can be expressed in terms of six functions, that we call <i>Edelen-Darboux potentials</i>. For isotropic Cauchy materials, this number reduces to three, while for incompressible isotropic Cauchy elasticity, only two such potentials are required. Second, we show that in Cauchy elasticity, the link between balance laws and symmetries is lost, in general, since Noether’s theorem does not apply. In particular, we show that, unlike hyperleasticity, objectivity is not equivalent to the balance of angular momentum. Third, we formulate the balance laws of Cauchy elasticity covariantly and derive a generalized Doyle–Ericksen formula. Fourth, the material symmetry and work theorems of Cauchy elasticity are revisited, based on the <i>stress-work 1-form</i> that emerges as a fundamental quantity in Cauchy elasticity. The stress-work 1-form allows for a classification via Darboux’s theorem that leads to a classification of Cauchy elastic solids based on their generalized energy functions. Fifth, we discuss the relevance of Carathéodory’s theorem on accessibility property of Pfaffian equations. Sixth, we show that Cauchy elasticity has an intrinsic geometric hystresis, which is the net work of stress in cyclic deformations. If the orientation of a cyclic deformation is reversed, the sign of the net work of stress changes, from which we conclude that stress in Cauchy elasticity is neither dissipative nor conservative. Seventh, we establish connections between Cauchy elasticity and the existing constitutive equations for active solids. Eighth, linear anisotropic Cauchy elasticity is examined in detail, and simple displacement-control loadings are proposed for each symmetry class to characterize the corresponding antisymmetric elastic constants. Ninth, we discuss both isotropic and anisotropic Cauchy anelasticity and show that the existing solutions for stress fields of distributed eigenstrains (and particularly defects) in hyperelastic solids can be readily extended to Cauchy elasticity. Tenth, we introduce Cosserat–Cauchy materials and demonstrate that an anisotropic three-dimensional Cosserat–Cauchy elastic solid has at most twenty four generalized energy functions.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"249 5","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-025-02120-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-025-02120-0","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Most theories and applications of elasticity rely on an energy function that depends on the strains from which the stresses can be derived. This is the traditional setting of Green elasticity, also known as hyper-elasticity. However, in its original form the theory of elasticity does not assume the existence of a strain energy function. In this case, called Cauchy elasticity, stresses are directly related to the strains. Since the emergence of modern elasticity in the 1940s, research on Cauchy elasticity has been relatively limited. One possible reason for this is that for Cauchy materials, the net work performed by stress along a closed path in the strain space may be nonzero. Therefore, such materials may require access to both energy sources and sinks. This characteristic has led some mechanicians to question the viability of Cauchy elasticity as a physically plausible theory of elasticity. In this paper, motivated by its relevance to recent applications, such as the modeling of active solids, we revisit Cauchy elasticity in a modern form. First, we show that in the general theory of anisotropic Cauchy elasticity, stress can be expressed in terms of six functions, that we call Edelen-Darboux potentials. For isotropic Cauchy materials, this number reduces to three, while for incompressible isotropic Cauchy elasticity, only two such potentials are required. Second, we show that in Cauchy elasticity, the link between balance laws and symmetries is lost, in general, since Noether’s theorem does not apply. In particular, we show that, unlike hyperleasticity, objectivity is not equivalent to the balance of angular momentum. Third, we formulate the balance laws of Cauchy elasticity covariantly and derive a generalized Doyle–Ericksen formula. Fourth, the material symmetry and work theorems of Cauchy elasticity are revisited, based on the stress-work 1-form that emerges as a fundamental quantity in Cauchy elasticity. The stress-work 1-form allows for a classification via Darboux’s theorem that leads to a classification of Cauchy elastic solids based on their generalized energy functions. Fifth, we discuss the relevance of Carathéodory’s theorem on accessibility property of Pfaffian equations. Sixth, we show that Cauchy elasticity has an intrinsic geometric hystresis, which is the net work of stress in cyclic deformations. If the orientation of a cyclic deformation is reversed, the sign of the net work of stress changes, from which we conclude that stress in Cauchy elasticity is neither dissipative nor conservative. Seventh, we establish connections between Cauchy elasticity and the existing constitutive equations for active solids. Eighth, linear anisotropic Cauchy elasticity is examined in detail, and simple displacement-control loadings are proposed for each symmetry class to characterize the corresponding antisymmetric elastic constants. Ninth, we discuss both isotropic and anisotropic Cauchy anelasticity and show that the existing solutions for stress fields of distributed eigenstrains (and particularly defects) in hyperelastic solids can be readily extended to Cauchy elasticity. Tenth, we introduce Cosserat–Cauchy materials and demonstrate that an anisotropic three-dimensional Cosserat–Cauchy elastic solid has at most twenty four generalized energy functions.
期刊介绍:
The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.