The travelling wave solutions to stochastic resonant nonlinear Schrödinger equation with both spatio-temporal and inter-modal dispersions having multiplicative white noise

IF 2.1 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Pramana Pub Date : 2025-09-02 DOI:10.1007/s12043-025-02992-7
Na Tang, Bing-Wen Zhang
{"title":"The travelling wave solutions to stochastic resonant nonlinear Schrödinger equation with both spatio-temporal and inter-modal dispersions having multiplicative white noise","authors":"Na Tang,&nbsp;Bing-Wen Zhang","doi":"10.1007/s12043-025-02992-7","DOIUrl":null,"url":null,"abstract":"<div><p>This paper constructs the travelling wave solutions of the stochastic resonant nonlinear Schrödinger equation that contains the stochastic term with multiplicative white noise based on the complete discriminant system for the polynomial method. By systematically investigating the polynomial law, we derive more abundant forms of travelling wave solutions. Notably, our new insight reveals that the non-averaged state of the solutions enables the characteristics of solitons and periodic modes to be maintained. In contrast, stochastic averaging will lead to changes in the periodic and soliton characteristics. In addition, we present the model diagrams for several specific parameters, which endows physical interpretations to the spatiotemporal structure in the white noise environment.</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"99 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-025-02992-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper constructs the travelling wave solutions of the stochastic resonant nonlinear Schrödinger equation that contains the stochastic term with multiplicative white noise based on the complete discriminant system for the polynomial method. By systematically investigating the polynomial law, we derive more abundant forms of travelling wave solutions. Notably, our new insight reveals that the non-averaged state of the solutions enables the characteristics of solitons and periodic modes to be maintained. In contrast, stochastic averaging will lead to changes in the periodic and soliton characteristics. In addition, we present the model diagrams for several specific parameters, which endows physical interpretations to the spatiotemporal structure in the white noise environment.

具有乘性白噪声的时空和模态间色散随机共振非线性Schrödinger方程的行波解
本文基于多项式方法的完全判别系统,构造了含乘性白噪声随机项的随机共振非线性Schrödinger方程的行波解。通过系统地研究多项式律,我们得到了更丰富的行波解形式。值得注意的是,我们的新见解揭示了解的非平均状态使孤子和周期模式的特征得以保持。相反,随机平均会导致周期和孤子特性的变化。此外,我们给出了几个具体参数的模型图,赋予白噪声环境下时空结构的物理解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pramana
Pramana 物理-物理:综合
CiteScore
3.60
自引率
7.10%
发文量
206
审稿时长
3 months
期刊介绍: Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信