Xinlin Yuan, Yong Wang, Yan Li, Hongbo Kang, Yu Chen, Boran Yang
{"title":"Hierarchical flow learning for low-light image enhancement","authors":"Xinlin Yuan, Yong Wang, Yan Li, Hongbo Kang, Yu Chen, Boran Yang","doi":"10.1016/j.dcan.2024.11.010","DOIUrl":null,"url":null,"abstract":"<div><div>Low-light images often have defects such as low visibility, low contrast, high noise, and high color distortion compared with well-exposed images. If the low-light region of an image is enhanced directly, the noise will inevitably blur the whole image. Besides, according to the retina-and-cortex (retinex) theory of color vision, the reflectivity of different image regions may differ, limiting the enhancement performance of applying uniform operations to the entire image. Therefore, we design a Hierarchical Flow Learning (HFL) framework, which consists of a Hierarchical Image Network (HIN) and a normalized invertible Flow Learning Network (FLN). HIN can extract hierarchical structural features from low-light images, while FLN maps the distribution of normally exposed images to a Gaussian distribution using the learned hierarchical features of low-light images. In subsequent testing, the reversibility of FLN allows inferring and obtaining enhanced low-light images. Specifically, the HIN extracts as much image information as possible from three scales, local, regional, and global, using a Triple-branch Hierarchical Fusion Module (THFM) and a Dual-Dconv Cross Fusion Module (DCFM). The THFM aggregates regional and global features to enhance the overall brightness and quality of low-light images by perceiving and extracting more structure information, whereas the DCFM uses the properties of the activation function and local features to enhance images at the pixel-level to reduce noise and improve contrast. In addition, in this paper, the model was trained using a negative log-likelihood loss function. Qualitative and quantitative experimental results demonstrate that our HFL can better handle many quality degradation types in low-light images compared with state-of-the-art solutions. The HFL model enhances low-light images with better visibility, less noise, and improved contrast, suitable for practical scenarios such as autonomous driving, medical imaging, and nighttime surveillance. Outperforming them by PSNR = 27.26 dB, SSIM = 0.93, and LPIPS = 0.10 on benchmark dataset LOL-v1. The source code of HFL is available at <span><span>https://github.com/Smile-QT/HFL-for-LIE</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 4","pages":"Pages 1158-1172"},"PeriodicalIF":7.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864824001585","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Low-light images often have defects such as low visibility, low contrast, high noise, and high color distortion compared with well-exposed images. If the low-light region of an image is enhanced directly, the noise will inevitably blur the whole image. Besides, according to the retina-and-cortex (retinex) theory of color vision, the reflectivity of different image regions may differ, limiting the enhancement performance of applying uniform operations to the entire image. Therefore, we design a Hierarchical Flow Learning (HFL) framework, which consists of a Hierarchical Image Network (HIN) and a normalized invertible Flow Learning Network (FLN). HIN can extract hierarchical structural features from low-light images, while FLN maps the distribution of normally exposed images to a Gaussian distribution using the learned hierarchical features of low-light images. In subsequent testing, the reversibility of FLN allows inferring and obtaining enhanced low-light images. Specifically, the HIN extracts as much image information as possible from three scales, local, regional, and global, using a Triple-branch Hierarchical Fusion Module (THFM) and a Dual-Dconv Cross Fusion Module (DCFM). The THFM aggregates regional and global features to enhance the overall brightness and quality of low-light images by perceiving and extracting more structure information, whereas the DCFM uses the properties of the activation function and local features to enhance images at the pixel-level to reduce noise and improve contrast. In addition, in this paper, the model was trained using a negative log-likelihood loss function. Qualitative and quantitative experimental results demonstrate that our HFL can better handle many quality degradation types in low-light images compared with state-of-the-art solutions. The HFL model enhances low-light images with better visibility, less noise, and improved contrast, suitable for practical scenarios such as autonomous driving, medical imaging, and nighttime surveillance. Outperforming them by PSNR = 27.26 dB, SSIM = 0.93, and LPIPS = 0.10 on benchmark dataset LOL-v1. The source code of HFL is available at https://github.com/Smile-QT/HFL-for-LIE.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.