Yan Zhen , Litianyi Tao , Dapeng Wu , Tong Tang , Ruyan Wang
{"title":"Energy-saving control strategy for ultra-dense network base stations based on multi-agent reinforcement learning","authors":"Yan Zhen , Litianyi Tao , Dapeng Wu , Tong Tang , Ruyan Wang","doi":"10.1016/j.dcan.2024.10.015","DOIUrl":null,"url":null,"abstract":"<div><div>Aiming at the problem of mobile data traffic surge in 5G networks, this paper proposes an effective solution combining massive multiple-input multiple-output techniques with Ultra-Dense Network (UDN) and focuses on solving the resulting challenge of increased energy consumption. A base station control algorithm based on Multi-Agent Proximity Policy Optimization (MAPPO) is designed. In the constructed 5G UDN model, each base station is considered as an agent, and the MAPPO algorithm enables inter-base station collaboration and interference management to optimize the network performance. To reduce the extra power consumption due to frequent sleep mode switching of base stations, a sleep mode switching decision algorithm is proposed. The algorithm reduces unnecessary power consumption by evaluating the network state similarity and intelligently adjusting the agent's action strategy. Simulation results show that the proposed algorithm reduces the power consumption by 24.61% compared to the no-sleep strategy and further reduces the power consumption by 5.36% compared to the traditional MAPPO algorithm under the premise of guaranteeing the quality of service of users.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 4","pages":"Pages 1007-1017"},"PeriodicalIF":7.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864824001391","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Aiming at the problem of mobile data traffic surge in 5G networks, this paper proposes an effective solution combining massive multiple-input multiple-output techniques with Ultra-Dense Network (UDN) and focuses on solving the resulting challenge of increased energy consumption. A base station control algorithm based on Multi-Agent Proximity Policy Optimization (MAPPO) is designed. In the constructed 5G UDN model, each base station is considered as an agent, and the MAPPO algorithm enables inter-base station collaboration and interference management to optimize the network performance. To reduce the extra power consumption due to frequent sleep mode switching of base stations, a sleep mode switching decision algorithm is proposed. The algorithm reduces unnecessary power consumption by evaluating the network state similarity and intelligently adjusting the agent's action strategy. Simulation results show that the proposed algorithm reduces the power consumption by 24.61% compared to the no-sleep strategy and further reduces the power consumption by 5.36% compared to the traditional MAPPO algorithm under the premise of guaranteeing the quality of service of users.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.