{"title":"A knowledge graph-based reinforcement learning approach for cooperative caching in MEC-enabled heterogeneous networks","authors":"Dan Wang, Yalu Bai, Bin Song","doi":"10.1016/j.dcan.2024.12.006","DOIUrl":null,"url":null,"abstract":"<div><div>Existing wireless networks are flooded with video data transmissions, and the demand for high-speed and low-latency video services continues to surge. This has brought with it challenges to networks in the form of congestion as well as the need for more resources and more dedicated caching schemes. Recently, Multi-access Edge Computing (MEC)-enabled heterogeneous networks, which leverage edge caches for proximity delivery, have emerged as a promising solution to all of these problems. Designing an effective edge caching scheme is critical to its success, however, in the face of limited resources. We propose a novel Knowledge Graph (KG)-based Dueling Deep Q-Network (KG-DDQN) for cooperative caching in MEC-enabled heterogeneous networks. The KG-DDQN scheme leverages a KG to uncover video relations, providing valuable insights into user preferences for the caching scheme. Specifically, the KG guides the selection of related videos as caching candidates (i.e., actions in the DDQN), thus providing a rich reference for implementing a personalized caching scheme while also improving the decision efficiency of the DDQN. Extensive simulation results validate the convergence effectiveness of the KG-DDQN, and it also outperforms baselines regarding cache hit rate and service delay.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 4","pages":"Pages 1237-1245"},"PeriodicalIF":7.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235286482400172X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Existing wireless networks are flooded with video data transmissions, and the demand for high-speed and low-latency video services continues to surge. This has brought with it challenges to networks in the form of congestion as well as the need for more resources and more dedicated caching schemes. Recently, Multi-access Edge Computing (MEC)-enabled heterogeneous networks, which leverage edge caches for proximity delivery, have emerged as a promising solution to all of these problems. Designing an effective edge caching scheme is critical to its success, however, in the face of limited resources. We propose a novel Knowledge Graph (KG)-based Dueling Deep Q-Network (KG-DDQN) for cooperative caching in MEC-enabled heterogeneous networks. The KG-DDQN scheme leverages a KG to uncover video relations, providing valuable insights into user preferences for the caching scheme. Specifically, the KG guides the selection of related videos as caching candidates (i.e., actions in the DDQN), thus providing a rich reference for implementing a personalized caching scheme while also improving the decision efficiency of the DDQN. Extensive simulation results validate the convergence effectiveness of the KG-DDQN, and it also outperforms baselines regarding cache hit rate and service delay.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.