Percolation threshold of TCP clusters governs relaxation dynamics in Cu-Zr metallic glass-forming liquids

IF 4.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Xiefu Zhang , Zean Tian , Yuanwei Pu
{"title":"Percolation threshold of TCP clusters governs relaxation dynamics in Cu-Zr metallic glass-forming liquids","authors":"Xiefu Zhang ,&nbsp;Zean Tian ,&nbsp;Yuanwei Pu","doi":"10.1016/j.intermet.2025.108978","DOIUrl":null,"url":null,"abstract":"<div><div>The origin of the abrupt dynamic slowdown observed during the concealed liquid-solid transition at temperature <em>T</em><sub><em>ls</em></sub> in rapidly cooled Cu-Zr metallic liquids remains poorly understood. Here, we resolve this longstanding puzzle by combining molecular dynamics simulations with the largest standard cluster analysis (LaSCA) to establish a direct causal link between topological cluster percolation and relaxation dynamics. Our findings reveal that topologically close-packed (TCP) clusters with an average size (<em>S</em><sub>TCP</sub>) exceeding a critical threshold (&gt;3) trigger a dynamic arrest below <em>T</em><sub><em>ls</em></sub>. This arrest arises from cooperative atomic motions driven by the spatial percolation of TCP clusters, which dominate the structural evolution. The identified <em>S</em><sub>TCP</sub> threshold (3.0–4.0 across compositions) serves as a universal signature of rigidity onset in metallic glass-forming liquids. By bridging atomic-scale topological connectivity with macroscopic dynamics, this work provides a predictive framework for tailoring relaxation behavior in non-equilibrium alloys.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"186 ","pages":"Article 108978"},"PeriodicalIF":4.8000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979525003437","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The origin of the abrupt dynamic slowdown observed during the concealed liquid-solid transition at temperature Tls in rapidly cooled Cu-Zr metallic liquids remains poorly understood. Here, we resolve this longstanding puzzle by combining molecular dynamics simulations with the largest standard cluster analysis (LaSCA) to establish a direct causal link between topological cluster percolation and relaxation dynamics. Our findings reveal that topologically close-packed (TCP) clusters with an average size (STCP) exceeding a critical threshold (>3) trigger a dynamic arrest below Tls. This arrest arises from cooperative atomic motions driven by the spatial percolation of TCP clusters, which dominate the structural evolution. The identified STCP threshold (3.0–4.0 across compositions) serves as a universal signature of rigidity onset in metallic glass-forming liquids. By bridging atomic-scale topological connectivity with macroscopic dynamics, this work provides a predictive framework for tailoring relaxation behavior in non-equilibrium alloys.
TCP簇的渗透阈值控制Cu-Zr金属玻璃形成液中的弛豫动力学
在快速冷却的Cu-Zr金属液体中,在温度为Tls的隐蔽液固转变过程中观察到的突然动态减速的起源仍然知之甚少。在这里,我们通过结合分子动力学模拟和最大标准聚类分析(LaSCA)来解决这个长期存在的难题,以建立拓扑簇渗透和弛豫动力学之间的直接因果关系。我们的研究结果表明,平均大小(STCP)超过临界阈值(>3)的拓扑紧密封装(TCP)集群触发Tls以下的动态捕获。这种阻滞源于TCP簇的空间渗透所驱动的协同原子运动,这主导了结构的演变。确定的STCP阈值(在组合物中为3.0-4.0)可作为金属玻璃形成液体中刚性开始的通用标志。通过将原子尺度的拓扑连通性与宏观动力学联系起来,这项工作为调整非平衡合金的弛豫行为提供了一个预测框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Intermetallics
Intermetallics 工程技术-材料科学:综合
CiteScore
7.80
自引率
9.10%
发文量
291
审稿时长
37 days
期刊介绍: This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys. The journal reports the science and engineering of metallic materials in the following aspects: Theories and experiments which address the relationship between property and structure in all length scales. Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations. Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties. Technological applications resulting from the understanding of property-structure relationship in materials. Novel and cutting-edge results warranting rapid communication. The journal also publishes special issues on selected topics and overviews by invitation only.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信