Profinite almost rigidity in 3-manifolds

IF 1.5 1区 数学 Q1 MATHEMATICS
Xiaoyu Xu
{"title":"Profinite almost rigidity in 3-manifolds","authors":"Xiaoyu Xu","doi":"10.1016/j.aim.2025.110505","DOIUrl":null,"url":null,"abstract":"<div><div>We prove that any compact, orientable 3-manifold with empty or toral boundary is profinitely almost rigid among all compact, orientable 3-manifolds. In other words, the profinite completion of its fundamental group determines its homeomorphism type to finitely many possibilities. Moreover, the profinite completion of the fundamental group of a mixed 3-manifold together with the peripheral structure uniquely determines the homeomorphism type of its Seifert part, i.e. the maximal graph manifold components in the JSJ-decomposition. On the other hand, without assigning the peripheral structure, the profinite completion of a mixed 3-manifold group may not uniquely determine the fundamental group of its Seifert part. The proof is based on JSJ-decomposition.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"480 ","pages":"Article 110505"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825004037","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that any compact, orientable 3-manifold with empty or toral boundary is profinitely almost rigid among all compact, orientable 3-manifolds. In other words, the profinite completion of its fundamental group determines its homeomorphism type to finitely many possibilities. Moreover, the profinite completion of the fundamental group of a mixed 3-manifold together with the peripheral structure uniquely determines the homeomorphism type of its Seifert part, i.e. the maximal graph manifold components in the JSJ-decomposition. On the other hand, without assigning the peripheral structure, the profinite completion of a mixed 3-manifold group may not uniquely determine the fundamental group of its Seifert part. The proof is based on JSJ-decomposition.
3流形中的无限几乎刚性
证明了在所有紧致可定向3流形中,任何具有空边界或总边界的紧致可定向3流形都是绝对几乎刚性的。换句话说,它的基群的无限完备性决定了它的同胚类型有有限多个可能。此外,混合3流形的基本群与外围结构的无限完备性唯一地决定了其Seifert部分的同胚类型,即jsj分解中的最大图流形分量。另一方面,在不指定外围结构的情况下,混合三流形群的无限完成可能不能唯一地确定其塞弗特部分的基本群。该证明基于jsj分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信