N-best adaptive Fourier decomposition for slice hyperholomorphic functions

IF 1.5 1区 数学 Q1 MATHEMATICS
Ming Jin , Tao Qian , Irene Sabadini , Jinxun Wang
{"title":"N-best adaptive Fourier decomposition for slice hyperholomorphic functions","authors":"Ming Jin ,&nbsp;Tao Qian ,&nbsp;Irene Sabadini ,&nbsp;Jinxun Wang","doi":"10.1016/j.aim.2025.110498","DOIUrl":null,"url":null,"abstract":"<div><div>The purpose of this article is to establish the <em>N</em>-best adaptive Fourier decomposition for slice hyperholomorphic functions in the slice hyperholomorphic quaternionic Hardy space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>H</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>)</mo></math></span> and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>B</mi><mo>)</mo></math></span>, where <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> is the right half space and <span><math><mi>B</mi></math></span> is the Euclidean unit ball of quaternions. We prove the existence of the <em>N</em>-best approximation problem for <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> functions which requires considering multiple parameters of the slice Takenaka-Malmquist system simultaneously. In the non-commutative quaternion field our proof relies on the limit behavior for the slice Takenaka-Malmquist system which is obtained through separating quaternionic Blaschke factors from elements of the system, that is quite different to the complex variable and several complex variables cases. Technically, it is more subtle for the right half space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"480 ","pages":"Article 110498"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003962","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this article is to establish the N-best adaptive Fourier decomposition for slice hyperholomorphic functions in the slice hyperholomorphic quaternionic Hardy space H2(H+) and H2(B), where H+ is the right half space and B is the Euclidean unit ball of quaternions. We prove the existence of the N-best approximation problem for H2 functions which requires considering multiple parameters of the slice Takenaka-Malmquist system simultaneously. In the non-commutative quaternion field our proof relies on the limit behavior for the slice Takenaka-Malmquist system which is obtained through separating quaternionic Blaschke factors from elements of the system, that is quite different to the complex variable and several complex variables cases. Technically, it is more subtle for the right half space H+.
切片超全纯函数的n -最优自适应傅里叶分解
本文的目的是在片超全纯四元数Hardy空间H2(H+)和H2(B)中建立片超全纯函数的n -最优自适应傅里叶分解,其中H+为右半空间,B为四元数的欧几里德单位球。证明了需要同时考虑片Takenaka-Malmquist系统多个参数的H2函数的n -最优逼近问题的存在性。在非交换四元数域中,我们的证明依赖于通过从系统元素中分离四元Blaschke因子而得到的片状Takenaka-Malmquist系统的极限行为,这与复变量和几种复变量情况有很大的不同。从技术上讲,右半空间H+更微妙。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信