{"title":"Wearing a fur coat in the summertime: Should digital pathology redefine medical imaging?","authors":"Peter Gershkovich","doi":"10.1016/j.jpi.2025.100450","DOIUrl":null,"url":null,"abstract":"<div><div>Slides are data. Once digitized, they function like any enterprise asset: accessible anywhere, ready for AI, and integrated into cloud workflows. But in pathology, they enter a realm of clinical complexity—demanding systems that handle nuance, integrate diverse data streams, scale effectively, enable computational exploration, and enforce rigorous security.</div><div>Although the Digital Imaging and Communications in Medicine (DICOM) standard revolutionized radiology, it is imperative to explore its adequacy in addressing modern digital pathology's orchestration needs. Designed more than 30 years ago, DICOM reflects assumptions and architectural choices that predate modular software, cloud computing, and AI-driven workflows.</div><div>This article shows that by embedding metadata, annotations, and communication protocols into a unified container, DICOM limits interoperability and exposes architectural vulnerabilities. The article begins by examining these innate design risks, then challenges DICOM's interoperability claims, and ultimately presents a modular, standards-aligned alternative.</div><div>The article argues that separating image data from orchestration logic improves scalability, security, and performance. Standards such as HL7 FHIR (Health Level Seven Fast Healthcare Interoperability Resources) and modern databases manage clinical metadata; formats like Scalable Vector Graphics handle annotations; and fast, cloud-native file transfer protocols, and microservices support tile-level image access. This separation of concerns allows each component to evolve independently, optimizes performance across the system, and better adapts to emerging AI-driven workflows—capabilities that are inherently constrained in monolithic architectures where these elements are tightly coupled.</div><div>It further shows that security requirements should not be embedded within the DICOM standard itself. Instead, security must be addressed through a layered, format-independent framework that spans systems, networks, applications, and data governance. Security is not a discrete feature but an overarching discipline—defined by its own evolving set of standards and best practices. Overlays such as those outlined in the National Institute of Standards and Technology SP 800-53 support modern Transport Layer Security, single sign-on, cryptographic hashing, and other controls that protect data streams without imposing architectural constraints or restricting technological choices.</div><div>Pathology stands at a rare inflection point. Unlike radiology, where DICOM is deeply entrenched, pathology workflows still operate in polyglot environments—leveraging proprietary formats, hybrid standards, and emerging cloud-native tools. This diversity, often seen as a limitation, offers a clean slate: an opportunity to architect a modern, modular infrastructure free from legacy constraints. While a full departure from DICOM is unnecessary, pathology is uniquely positioned to prototype the future—to define a more flexible, secure, and interoperable model that other domains in medical imaging may one day follow. With support from forward-looking DICOM advocates, pathology can help reshape not just its own infrastructure, but the trajectory of medical imaging itself.</div></div>","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"18 ","pages":"Article 100450"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pathology Informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2153353925000355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Slides are data. Once digitized, they function like any enterprise asset: accessible anywhere, ready for AI, and integrated into cloud workflows. But in pathology, they enter a realm of clinical complexity—demanding systems that handle nuance, integrate diverse data streams, scale effectively, enable computational exploration, and enforce rigorous security.
Although the Digital Imaging and Communications in Medicine (DICOM) standard revolutionized radiology, it is imperative to explore its adequacy in addressing modern digital pathology's orchestration needs. Designed more than 30 years ago, DICOM reflects assumptions and architectural choices that predate modular software, cloud computing, and AI-driven workflows.
This article shows that by embedding metadata, annotations, and communication protocols into a unified container, DICOM limits interoperability and exposes architectural vulnerabilities. The article begins by examining these innate design risks, then challenges DICOM's interoperability claims, and ultimately presents a modular, standards-aligned alternative.
The article argues that separating image data from orchestration logic improves scalability, security, and performance. Standards such as HL7 FHIR (Health Level Seven Fast Healthcare Interoperability Resources) and modern databases manage clinical metadata; formats like Scalable Vector Graphics handle annotations; and fast, cloud-native file transfer protocols, and microservices support tile-level image access. This separation of concerns allows each component to evolve independently, optimizes performance across the system, and better adapts to emerging AI-driven workflows—capabilities that are inherently constrained in monolithic architectures where these elements are tightly coupled.
It further shows that security requirements should not be embedded within the DICOM standard itself. Instead, security must be addressed through a layered, format-independent framework that spans systems, networks, applications, and data governance. Security is not a discrete feature but an overarching discipline—defined by its own evolving set of standards and best practices. Overlays such as those outlined in the National Institute of Standards and Technology SP 800-53 support modern Transport Layer Security, single sign-on, cryptographic hashing, and other controls that protect data streams without imposing architectural constraints or restricting technological choices.
Pathology stands at a rare inflection point. Unlike radiology, where DICOM is deeply entrenched, pathology workflows still operate in polyglot environments—leveraging proprietary formats, hybrid standards, and emerging cloud-native tools. This diversity, often seen as a limitation, offers a clean slate: an opportunity to architect a modern, modular infrastructure free from legacy constraints. While a full departure from DICOM is unnecessary, pathology is uniquely positioned to prototype the future—to define a more flexible, secure, and interoperable model that other domains in medical imaging may one day follow. With support from forward-looking DICOM advocates, pathology can help reshape not just its own infrastructure, but the trajectory of medical imaging itself.
期刊介绍:
The Journal of Pathology Informatics (JPI) is an open access peer-reviewed journal dedicated to the advancement of pathology informatics. This is the official journal of the Association for Pathology Informatics (API). The journal aims to publish broadly about pathology informatics and freely disseminate all articles worldwide. This journal is of interest to pathologists, informaticians, academics, researchers, health IT specialists, information officers, IT staff, vendors, and anyone with an interest in informatics. We encourage submissions from anyone with an interest in the field of pathology informatics. We publish all types of papers related to pathology informatics including original research articles, technical notes, reviews, viewpoints, commentaries, editorials, symposia, meeting abstracts, book reviews, and correspondence to the editors. All submissions are subject to rigorous peer review by the well-regarded editorial board and by expert referees in appropriate specialties.