{"title":"Probing the one-loop quantum correction on the Schwarzschild black hole with the gravitational lensing images of a point-like source","authors":"Ding-Long Cao, Yuan-Xing Gao, Yi Xie","doi":"10.1007/s10714-025-03439-5","DOIUrl":null,"url":null,"abstract":"<div><p>The one-loop quantum corrections of General Relativity contribute to understand its ultraviolet completion and can be tested by directly imaging the supermassive black hole in our Galactic center. In this work, we analytically investigate the weak deflection gravitational lensing of the one-loop quantum corrected Schwarzschild spacetime that is characterized by a normalized quantum correction parameter <span>\\(\\lambda \\)</span>, and discuss the detectability of its weak deflection lensing observables. We find that these observables have the potential to be measured but their deviations from those of a Schwarzschild black hole can not be distinguished due to current limited resolution. To gain deeper insights into the quantum nature, we further study the strong deflection gravitational lensing analytically. According to the shadow measurement of Sgr A* by the Event Horizon Telescope, we obtain a constraint on <span>\\(\\lambda \\)</span> and demonstrate that the strong deflection lensing observables such as the angular separation, brightness difference and time delay of the relativistic images are beyond the reach of present capacity in this allowable range. Consequently, identifying the quantum effects around such a corrected Schwarzschild spacetime with gravitational lensing is not feasible at current stage.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"57 6","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-025-03439-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The one-loop quantum corrections of General Relativity contribute to understand its ultraviolet completion and can be tested by directly imaging the supermassive black hole in our Galactic center. In this work, we analytically investigate the weak deflection gravitational lensing of the one-loop quantum corrected Schwarzschild spacetime that is characterized by a normalized quantum correction parameter \(\lambda \), and discuss the detectability of its weak deflection lensing observables. We find that these observables have the potential to be measured but their deviations from those of a Schwarzschild black hole can not be distinguished due to current limited resolution. To gain deeper insights into the quantum nature, we further study the strong deflection gravitational lensing analytically. According to the shadow measurement of Sgr A* by the Event Horizon Telescope, we obtain a constraint on \(\lambda \) and demonstrate that the strong deflection lensing observables such as the angular separation, brightness difference and time delay of the relativistic images are beyond the reach of present capacity in this allowable range. Consequently, identifying the quantum effects around such a corrected Schwarzschild spacetime with gravitational lensing is not feasible at current stage.
期刊介绍:
General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation.
It welcomes in particular original articles on the following topics of current research:
Analytical general relativity, including its interface with geometrical analysis
Numerical relativity
Theoretical and observational cosmology
Relativistic astrophysics
Gravitational waves: data analysis, astrophysical sources and detector science
Extensions of general relativity
Supergravity
Gravitational aspects of string theory and its extensions
Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations
Quantum field theory in curved spacetime
Non-commutative geometry and gravitation
Experimental gravity, in particular tests of general relativity
The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.