{"title":"Phase space analysis of Rényi Holographic dark energy model","authors":"Santanu Das, Nilanjana Mahata","doi":"10.1007/s10714-025-03454-6","DOIUrl":null,"url":null,"abstract":"<div><p>Recent observational evidences point out towards a late time acceleration of the universe. In order to study the accelerated expansion, scientists have incorporated the existence of an exotic matter with negative pressure, termed as dark energy. Afterwards a new idea of dark energy has been studied depending on the holographic principle of quantum gravity, called as the Holographic Dark Energy(HDE). Later on modifying Bekestein-Hawking entropy, different generalized entropies have been proposed, one of them being Rényi entropy which leads to Rényi holographic dark energy model (RHDE). We have considered RHDE model with Hubble horizon as the IR cut off and have studied the cosmological behaviour under non interacting, linear and non-linear interacting scenarios with the help of dynamical systems analysis. We have also investigated the stability of the system around hyperbolic critical points along with the type of fluid description, evolution of equation of state parameter as well as matter and energy density parameters.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"57 8","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-025-03454-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Recent observational evidences point out towards a late time acceleration of the universe. In order to study the accelerated expansion, scientists have incorporated the existence of an exotic matter with negative pressure, termed as dark energy. Afterwards a new idea of dark energy has been studied depending on the holographic principle of quantum gravity, called as the Holographic Dark Energy(HDE). Later on modifying Bekestein-Hawking entropy, different generalized entropies have been proposed, one of them being Rényi entropy which leads to Rényi holographic dark energy model (RHDE). We have considered RHDE model with Hubble horizon as the IR cut off and have studied the cosmological behaviour under non interacting, linear and non-linear interacting scenarios with the help of dynamical systems analysis. We have also investigated the stability of the system around hyperbolic critical points along with the type of fluid description, evolution of equation of state parameter as well as matter and energy density parameters.
期刊介绍:
General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation.
It welcomes in particular original articles on the following topics of current research:
Analytical general relativity, including its interface with geometrical analysis
Numerical relativity
Theoretical and observational cosmology
Relativistic astrophysics
Gravitational waves: data analysis, astrophysical sources and detector science
Extensions of general relativity
Supergravity
Gravitational aspects of string theory and its extensions
Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations
Quantum field theory in curved spacetime
Non-commutative geometry and gravitation
Experimental gravity, in particular tests of general relativity
The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.