Niels Lubbes, Mehdi Makhul, Josef Schicho, Audie Warren
{"title":"Irreducible Components of Sets of Points in the Plane that Satisfy Distance Conditions","authors":"Niels Lubbes, Mehdi Makhul, Josef Schicho, Audie Warren","doi":"10.1007/s10208-025-09725-7","DOIUrl":null,"url":null,"abstract":"<p>For a given graph whose edges are labeled with general real numbers, we consider the set of functions from the vertex set into the Euclidean plane such that the distance between the images of neighbouring vertices is equal to the corresponding edge label. This set of functions can be expressed as the zero set of quadratic polynomials and our main result characterizes the number of complex irreducible components of this zero set in terms of combinatorial properties of the graph. In case the complex components are three-dimensional, then the graph is minimally rigid and the component number is a well-known invariant from rigidity theory. If the components are four-dimensional, then they correspond to one-dimensional coupler curves of flexible planar mechanisms. As an application, we characterize the degree of irreducible components of such coupler curves combinatorially.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"27 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-025-09725-7","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
For a given graph whose edges are labeled with general real numbers, we consider the set of functions from the vertex set into the Euclidean plane such that the distance between the images of neighbouring vertices is equal to the corresponding edge label. This set of functions can be expressed as the zero set of quadratic polynomials and our main result characterizes the number of complex irreducible components of this zero set in terms of combinatorial properties of the graph. In case the complex components are three-dimensional, then the graph is minimally rigid and the component number is a well-known invariant from rigidity theory. If the components are four-dimensional, then they correspond to one-dimensional coupler curves of flexible planar mechanisms. As an application, we characterize the degree of irreducible components of such coupler curves combinatorially.
期刊介绍:
Foundations of Computational Mathematics (FoCM) will publish research and survey papers of the highest quality which further the understanding of the connections between mathematics and computation. The journal aims to promote the exploration of all fundamental issues underlying the creative tension among mathematics, computer science and application areas unencumbered by any external criteria such as the pressure for applications. The journal will thus serve an increasingly important and applicable area of mathematics. The journal hopes to further the understanding of the deep relationships between mathematical theory: analysis, topology, geometry and algebra, and the computational processes as they are evolving in tandem with the modern computer.
With its distinguished editorial board selecting papers of the highest quality and interest from the international community, FoCM hopes to influence both mathematics and computation. Relevance to applications will not constitute a requirement for the publication of articles.
The journal does not accept code for review however authors who have code/data related to the submission should include a weblink to the repository where the data/code is stored.