Raymond van Bommel, Jordan Docking, Vladimir Dokchitser, Reynald Lercier, Elisa Lorenzo García
{"title":"Reduction of Plane Quartics and Cayley Octads","authors":"Raymond van Bommel, Jordan Docking, Vladimir Dokchitser, Reynald Lercier, Elisa Lorenzo García","doi":"10.1007/s10208-025-09704-y","DOIUrl":null,"url":null,"abstract":"<p>We give a conjectural characterisation of the stable reduction of plane quartics over local fields in terms of their Cayley octads. This results in <i>p</i>-adic criteria that efficiently give the stable reduction type amongst the 42 possible types, and whether the reduction is hyperelliptic or not. These criteria are in the vein of the machinery of “cluster pictures” for hyperelliptic curves. We also construct explicit families of quartic curves that realise all possible stable types, against which we test these criteria. We give numerical examples that illustrate how to use these criteria in practice.\n</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"27 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-025-09704-y","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We give a conjectural characterisation of the stable reduction of plane quartics over local fields in terms of their Cayley octads. This results in p-adic criteria that efficiently give the stable reduction type amongst the 42 possible types, and whether the reduction is hyperelliptic or not. These criteria are in the vein of the machinery of “cluster pictures” for hyperelliptic curves. We also construct explicit families of quartic curves that realise all possible stable types, against which we test these criteria. We give numerical examples that illustrate how to use these criteria in practice.
期刊介绍:
Foundations of Computational Mathematics (FoCM) will publish research and survey papers of the highest quality which further the understanding of the connections between mathematics and computation. The journal aims to promote the exploration of all fundamental issues underlying the creative tension among mathematics, computer science and application areas unencumbered by any external criteria such as the pressure for applications. The journal will thus serve an increasingly important and applicable area of mathematics. The journal hopes to further the understanding of the deep relationships between mathematical theory: analysis, topology, geometry and algebra, and the computational processes as they are evolving in tandem with the modern computer.
With its distinguished editorial board selecting papers of the highest quality and interest from the international community, FoCM hopes to influence both mathematics and computation. Relevance to applications will not constitute a requirement for the publication of articles.
The journal does not accept code for review however authors who have code/data related to the submission should include a weblink to the repository where the data/code is stored.