求助PDF
{"title":"Uniform Distribution via Lattices: From Point Sets to Sequences","authors":"Damir Ferizović","doi":"10.1007/s10208-025-09706-w","DOIUrl":null,"url":null,"abstract":"<p>In this work we construct many sequences <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>S</mi><mo>=</mo><msubsup><mi>S</mi><mrow><mi>b</mi><mo>,</mo><mi>d</mi></mrow><mi>&#x25FB;</mi></msubsup></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.315ex\" role=\"img\" style=\"vertical-align: -1.207ex;\" viewbox=\"0 -907.7 3563.9 1427.2\" width=\"8.277ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-53\" y=\"0\"></use><use x=\"923\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><g transform=\"translate(1979,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-53\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"926\" xlink:href=\"#MJAMS-25A1\" y=\"488\"></use><g transform=\"translate(613,-327)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-62\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"429\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"708\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>S</mi><mo>=</mo><msubsup><mi>S</mi><mrow><mi>b</mi><mo>,</mo><mi>d</mi></mrow><mi>◻</mi></msubsup></math></span></span><script type=\"math/tex\">S=S^\\Box _{b,d}</script></span> and <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>S</mi><mo>=</mo><msubsup><mi>S</mi><mrow><mi>b</mi><mo>,</mo><mi>d</mi></mrow><mo>&#x229E;</mo></msubsup></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.315ex\" role=\"img\" style=\"vertical-align: -1.207ex;\" viewbox=\"0 -907.7 3563.9 1427.2\" width=\"8.277ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-53\" y=\"0\"></use><use x=\"923\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><g transform=\"translate(1979,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-53\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"926\" xlink:href=\"#MJAMS-229E\" y=\"488\"></use><g transform=\"translate(613,-327)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-62\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"429\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"708\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>S</mi><mo>=</mo><msubsup><mi>S</mi><mrow><mi>b</mi><mo>,</mo><mi>d</mi></mrow><mo>⊞</mo></msubsup></math></span></span><script type=\"math/tex\">S=S^\\boxplus _{b,d}</script></span> in the <i>d</i>-dimensional unit hypercube, which for <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi><mo>=</mo><mn>1</mn></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.013ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -778.3 2358.1 866.5\" width=\"5.477ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use><use x=\"801\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><use x=\"1857\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi><mo>=</mo><mn>1</mn></math></span></span><script type=\"math/tex\">d=1</script></span> are (generalized) van der Corput sequences or Niederreiter’s (0, 1)-sequences in base <i>b</i>, respectively. Further, we introduce the notion of <i>f</i>-subadditivity and use it to define discrepancy functions which subsume the notion of <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>L</mi><mi>p</mi></msup></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.912ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -735.2 1137.5 823.4\" width=\"2.642ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-4C\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"963\" xlink:href=\"#MJMATHI-70\" y=\"513\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>L</mi><mi>p</mi></msup></math></span></span><script type=\"math/tex\">L^p</script></span>-discrepancy, Wasserstein <i>p</i>-distance, and many more methods to compare empirical measures to an underlying base measure. We will relate bounds for a given discrepancy function <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"script\">D</mi></mrow></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.009ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -777 855.5 865.1\" width=\"1.987ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJSCR-44\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"script\">D</mi></mrow></math></span></span><script type=\"math/tex\">\\mathscr {D}</script></span> of the multiset of projected lattice sets (treated as empirical measures), <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>P</mi><mo stretchy=\"false\">(</mo><msup><mi>b</mi><mrow><mo>&#x2212;</mo><mi>m</mi></mrow></msup><msup><mrow><mi mathvariant=\"double-struck\">Z</mi></mrow><mi>d</mi></msup></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.914ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -950.8 3979.8 1254.7\" width=\"9.244ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-50\" y=\"0\"></use><use x=\"751\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><g transform=\"translate(1141,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-62\" y=\"0\"></use><g transform=\"translate(429,362)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"778\" xlink:href=\"#MJMATHI-6D\" y=\"0\"></use></g></g><g transform=\"translate(2842,0)\"><use x=\"0\" xlink:href=\"#MJAMS-5A\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"943\" xlink:href=\"#MJMATHI-64\" y=\"581\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>P</mi><mo stretchy=\"false\">(</mo><msup><mi>b</mi><mrow><mo>−</mo><mi>m</mi></mrow></msup><msup><mrow><mi mathvariant=\"double-struck\">Z</mi></mrow><mi>d</mi></msup></math></span></span><script type=\"math/tex\">P(b^{-m}\\mathbb {Z}^d</script></span>), to bounds of <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"script\">D</mi></mrow><mo stretchy=\"false\">(</mo><msub><mi>E</mi><mrow><msub><mi>Z</mi><mi>N</mi></msub></mrow></msub><mo stretchy=\"false\">)</mo></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.614ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -821.4 3471.3 1125.3\" width=\"8.062ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJSCR-44\" y=\"0\"></use><use x=\"855\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><g transform=\"translate(1245,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-45\" y=\"0\"></use><g transform=\"translate(738,-150)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-5A\" y=\"0\"></use><use transform=\"scale(0.5)\" x=\"966\" xlink:href=\"#MJMATHI-4E\" y=\"-213\"></use></g></g><use x=\"3081\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"script\">D</mi></mrow><mo stretchy=\"false\">(</mo><msub><mi>E</mi><mrow><msub><mi>Z</mi><mi>N</mi></msub></mrow></msub><mo stretchy=\"false\">)</mo></math></span></span><script type=\"math/tex\">\\mathscr {D}(E_{Z_N})</script></span>, i.e. the initial segments of the sequence <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Z</mi><mo>=</mo><mi>P</mi><mo stretchy=\"false\">(</mo><mi>S</mi><mo stretchy=\"false\">)</mo></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.609ex\" role=\"img\" style=\"vertical-align: -0.705ex;\" viewbox=\"0 -820.1 4233.6 1123.4\" width=\"9.833ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-5A\" y=\"0\"></use><use x=\"1001\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><use x=\"2057\" xlink:href=\"#MJMATHI-50\" y=\"0\"></use><use x=\"2809\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"3198\" xlink:href=\"#MJMATHI-53\" y=\"0\"></use><use x=\"3844\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Z</mi><mo>=</mo><mi>P</mi><mo stretchy=\"false\">(</mo><mi>S</mi><mo stretchy=\"false\">)</mo></math></span></span><script type=\"math/tex\">Z=P(S)</script></span> for any <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi><mo>&#x2208;</mo><mrow><mi mathvariant=\"double-struck\">N</mi></mrow></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.909ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -733.9 2834.1 822.1\" width=\"6.582ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-4E\" y=\"0\"></use><use x=\"1166\" xlink:href=\"#MJMAIN-2208\" y=\"0\"></use><use x=\"2111\" xlink:href=\"#MJAMS-4E\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi><mo>∈</mo><mrow><mi mathvariant=\"double-struck\">N</mi></mrow></math></span></span><script type=\"math/tex\">N\\in \\mathbb {N}</script></span>. We show that this relation holds in any dimension <i>d</i> and for any map <i>P</i> defined on a hypercube, for which bounds on <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"script\">D</mi></mrow><mo stretchy=\"false\">(</mo><msub><mi>E</mi><mrow><mi>P</mi><mo stretchy=\"false\">(</mo><msup><mi>b</mi><mrow><mo>&#x2212;</mo><mi>m</mi></mrow></msup><msup><mrow><mi mathvariant=\"double-struck\">Z</mi></mrow><mi>d</mi></msup><mo>+</mo><mi>v</mi><mo stretchy=\"false\">)</mo></mrow></msub><mo stretchy=\"false\">)</mo></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.114ex\" role=\"img\" style=\"vertical-align: -1.207ex;\" viewbox=\"0 -821.4 6456.4 1340.9\" width=\"14.996ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJSCR-44\" y=\"0\"></use><use x=\"855\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><g transform=\"translate(1245,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-45\" y=\"0\"></use><g transform=\"translate(738,-294)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-50\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"751\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><g transform=\"translate(806,0)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-62\" y=\"0\"></use><g transform=\"translate(303,298)\"><use transform=\"scale(0.5)\" x=\"0\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use transform=\"scale(0.5)\" x=\"778\" xlink:href=\"#MJMATHI-6D\" y=\"0\"></use></g></g><g transform=\"translate(2009,0)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJAMS-5A\" y=\"0\"></use><use transform=\"scale(0.5)\" x=\"943\" xlink:href=\"#MJMATHI-64\" y=\"581\"></use></g><use transform=\"scale(0.707)\" x=\"3979\" xlink:href=\"#MJMAIN-2B\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"4758\" xlink:href=\"#MJMATHI-76\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"5243\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></g><use x=\"6066\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"script\">D</mi></mrow><mo stretchy=\"false\">(</mo><msub><mi>E</mi><mrow><mi>P</mi><mo stretchy=\"false\">(</mo><msup><mi>b</mi><mrow><mo>−</mo><mi>m</mi></mrow></msup><msup><mrow><mi mathvariant=\"double-struck\">Z</mi></mrow><mi>d</mi></msup><mo>+</mo><mi>v</mi><mo stretchy=\"false\">)</mo></mrow></msub><mo stretchy=\"false\">)</mo></math></span></span><script type=\"math/tex\">\\mathscr {D}(E_{P(b^{-m}\\mathbb {Z}^d+v)})</script></span> can be obtained. We apply this theorem in <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi><mo>=</mo><mn>1</mn></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.013ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -778.3 2358.1 866.5\" width=\"5.477ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use><use x=\"801\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><use x=\"1857\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi><mo>=</mo><mn>1</mn></math></span></span><script type=\"math/tex\">d=1</script></span> to obtain bounds for the <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>L</mi><mi>p</mi></msup></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.912ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -735.2 1137.5 823.4\" width=\"2.642ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-4C\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"963\" xlink:href=\"#MJMATHI-70\" y=\"513\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>L</mi><mi>p</mi></msup></math></span></span><script type=\"math/tex\">L^p</script></span>-discrepancy of van der Corput and Niederreiter (0,1) sequences in terms of digit sums for all <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0</mn><mo>&lt;</mo><mi>p</mi><mo>&#x2264;</mo><mi mathvariant=\"normal\">&#x221E;</mi></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.309ex\" role=\"img\" style=\"vertical-align: -0.605ex;\" viewbox=\"0 -733.9 4672.6 994.3\" width=\"10.853ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use><use x=\"778\" xlink:href=\"#MJMAIN-3C\" y=\"0\"></use><use x=\"1834\" xlink:href=\"#MJMATHI-70\" y=\"0\"></use><use x=\"2615\" xlink:href=\"#MJMAIN-2264\" y=\"0\"></use><use x=\"3672\" xlink:href=\"#MJMAIN-221E\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0</mn><mo><</mo><mi>p</mi><mo>≤</mo><mi mathvariant=\"normal\">∞</mi></math></span></span><script type=\"math/tex\">0<p\\le \\infty </script></span>. In <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi><mo>=</mo><mn>2</mn></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.009ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -777 2358.1 865.1\" width=\"5.477ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use><use x=\"801\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><use x=\"1857\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi><mo>=</mo><mn>2</mn></math></span></span><script type=\"math/tex\">d=2</script></span> an application of our construction yields many sequences on the two-sphere, such that the initial segments <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Z</mi><mi>N</mi></msub></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.213ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -735.2 1411.8 952.8\" width=\"3.279ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-5A\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"966\" xlink:href=\"#MJMATHI-4E\" y=\"-213\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Z</mi><mi>N</mi></msub></math></span></span><script type=\"math/tex\">Z_N</script></span> have small <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>L</mi><mi mathvariant=\"normal\">&#x221E;</mi></msup></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.912ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -735.2 1489 823.4\" width=\"3.458ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-4C\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"963\" xlink:href=\"#MJMAIN-221E\" y=\"513\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>L</mi><mi mathvariant=\"normal\">∞</mi></msup></math></span></span><script type=\"math/tex\">L^\\infty </script></span>-discrepancy.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"38 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-025-09706-w","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
In this work we construct many sequences S = S b , d ◻ and S = S b , d ⊞ in the d -dimensional unit hypercube, which for d = 1 are (generalized) van der Corput sequences or Niederreiter’s (0, 1)-sequences in base b , respectively. Further, we introduce the notion of f -subadditivity and use it to define discrepancy functions which subsume the notion of L p -discrepancy, Wasserstein p -distance, and many more methods to compare empirical measures to an underlying base measure. We will relate bounds for a given discrepancy function D of the multiset of projected lattice sets (treated as empirical measures), P ( b − m Z d ), to bounds of D ( E Z N ) , i.e. the initial segments of the sequence Z = P ( S ) for any N ∈ N . We show that this relation holds in any dimension d and for any map P defined on a hypercube, for which bounds on D ( E P ( b − m Z d + v ) ) can be obtained. We apply this theorem in d = 1 to obtain bounds for the L p -discrepancy of van der Corput and Niederreiter (0,1) sequences in terms of digit sums for all 0 < p ≤ ∞ . In d = 2 an application of our construction yields many sequences on the two-sphere, such that the initial segments Z N have small L ∞ -discrepancy.
格的均匀分布:从点集到序列
本文在d维单位超立方体上构造了多个序列S=Sb,d =S^ \Box _b,d{和S=Sb,d =S =S^ }\boxplus _b,d{,它们对于d=1d=1分别是基底b上的(广义)van der Corput序列或Niederreiter的(0,1)序列。此外,我们引入了f-次可加性的概念,并使用它来定义差异函数,该函数包含LpL^p-差异,Wasserstein p-距离的概念,以及许多将经验测度与基础测度进行比较的方法。我们将把投影格集(作为经验测度)的多集P(b−mZdP(b^}-m\mathbb Z{^ D)的给定差异函数D }{}\mathscr D的界与D(EZN) {}\mathscr D{(}E_Z_N)的界联系起来,即对于任意N{∈NN }\in\mathbb N,序列Z=P(S)Z=P(S)的初始段。我们证明了这种关系在任意维D和定义在超立方体上的任意映射P中成立。可以{得到}D(EP(b−mZd+v)) \mathscr D{(}E_P{(b^-{m }\mathbb Z{^} D +v))上的界。在d=1d=1条件下,我们应用该定理得到了van der Corput和Niederreiter(0,1)序列的LpL^p-差异在所有0&lt;p≤∞0条件下的数字和的界。在d=2d=2条件下,我们构造的一个应用在两球上得到了许多序列,使得初始段ZNZ_N具有很小的L∞L^ }\infty -差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。