Uniform Distribution via Lattices: From Point Sets to Sequences

IF 2.7 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Damir Ferizović
{"title":"Uniform Distribution via Lattices: From Point Sets to Sequences","authors":"Damir Ferizović","doi":"10.1007/s10208-025-09706-w","DOIUrl":null,"url":null,"abstract":"<p>In this work we construct many sequences <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msubsup&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mi&gt;&amp;#x25FB;&lt;/mi&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.315ex\" role=\"img\" style=\"vertical-align: -1.207ex;\" viewbox=\"0 -907.7 3563.9 1427.2\" width=\"8.277ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-53\" y=\"0\"></use><use x=\"923\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><g transform=\"translate(1979,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-53\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"926\" xlink:href=\"#MJAMS-25A1\" y=\"488\"></use><g transform=\"translate(613,-327)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-62\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"429\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"708\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>S</mi><mo>=</mo><msubsup><mi>S</mi><mrow><mi>b</mi><mo>,</mo><mi>d</mi></mrow><mi>◻</mi></msubsup></math></span></span><script type=\"math/tex\">S=S^\\Box _{b,d}</script></span> and <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msubsup&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;&amp;#x229E;&lt;/mo&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.315ex\" role=\"img\" style=\"vertical-align: -1.207ex;\" viewbox=\"0 -907.7 3563.9 1427.2\" width=\"8.277ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-53\" y=\"0\"></use><use x=\"923\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><g transform=\"translate(1979,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-53\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"926\" xlink:href=\"#MJAMS-229E\" y=\"488\"></use><g transform=\"translate(613,-327)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-62\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"429\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"708\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>S</mi><mo>=</mo><msubsup><mi>S</mi><mrow><mi>b</mi><mo>,</mo><mi>d</mi></mrow><mo>⊞</mo></msubsup></math></span></span><script type=\"math/tex\">S=S^\\boxplus _{b,d}</script></span> in the <i>d</i>-dimensional unit hypercube, which for <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.013ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -778.3 2358.1 866.5\" width=\"5.477ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use><use x=\"801\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><use x=\"1857\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi><mo>=</mo><mn>1</mn></math></span></span><script type=\"math/tex\">d=1</script></span> are (generalized) van der Corput sequences or Niederreiter’s (0, 1)-sequences in base <i>b</i>, respectively. Further, we introduce the notion of <i>f</i>-subadditivity and use it to define discrepancy functions which subsume the notion of <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msup&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/msup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.912ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -735.2 1137.5 823.4\" width=\"2.642ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-4C\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"963\" xlink:href=\"#MJMATHI-70\" y=\"513\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>L</mi><mi>p</mi></msup></math></span></span><script type=\"math/tex\">L^p</script></span>-discrepancy, Wasserstein <i>p</i>-distance, and many more methods to compare empirical measures to an underlying base measure. We will relate bounds for a given discrepancy function <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mi mathvariant=\"script\"&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.009ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -777 855.5 865.1\" width=\"1.987ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJSCR-44\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"script\">D</mi></mrow></math></span></span><script type=\"math/tex\">\\mathscr {D}</script></span> of the multiset of projected lattice sets (treated as empirical measures), <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;&amp;#x2212;&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi mathvariant=\"double-struck\"&gt;Z&lt;/mi&gt;&lt;/mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/msup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.914ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -950.8 3979.8 1254.7\" width=\"9.244ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-50\" y=\"0\"></use><use x=\"751\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><g transform=\"translate(1141,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-62\" y=\"0\"></use><g transform=\"translate(429,362)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"778\" xlink:href=\"#MJMATHI-6D\" y=\"0\"></use></g></g><g transform=\"translate(2842,0)\"><use x=\"0\" xlink:href=\"#MJAMS-5A\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"943\" xlink:href=\"#MJMATHI-64\" y=\"581\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>P</mi><mo stretchy=\"false\">(</mo><msup><mi>b</mi><mrow><mo>−</mo><mi>m</mi></mrow></msup><msup><mrow><mi mathvariant=\"double-struck\">Z</mi></mrow><mi>d</mi></msup></math></span></span><script type=\"math/tex\">P(b^{-m}\\mathbb {Z}^d</script></span>), to bounds of <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mi mathvariant=\"script\"&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.614ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -821.4 3471.3 1125.3\" width=\"8.062ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJSCR-44\" y=\"0\"></use><use x=\"855\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><g transform=\"translate(1245,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-45\" y=\"0\"></use><g transform=\"translate(738,-150)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-5A\" y=\"0\"></use><use transform=\"scale(0.5)\" x=\"966\" xlink:href=\"#MJMATHI-4E\" y=\"-213\"></use></g></g><use x=\"3081\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"script\">D</mi></mrow><mo stretchy=\"false\">(</mo><msub><mi>E</mi><mrow><msub><mi>Z</mi><mi>N</mi></msub></mrow></msub><mo stretchy=\"false\">)</mo></math></span></span><script type=\"math/tex\">\\mathscr {D}(E_{Z_N})</script></span>, i.e. the initial segments of the sequence <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.609ex\" role=\"img\" style=\"vertical-align: -0.705ex;\" viewbox=\"0 -820.1 4233.6 1123.4\" width=\"9.833ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-5A\" y=\"0\"></use><use x=\"1001\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><use x=\"2057\" xlink:href=\"#MJMATHI-50\" y=\"0\"></use><use x=\"2809\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"3198\" xlink:href=\"#MJMATHI-53\" y=\"0\"></use><use x=\"3844\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Z</mi><mo>=</mo><mi>P</mi><mo stretchy=\"false\">(</mo><mi>S</mi><mo stretchy=\"false\">)</mo></math></span></span><script type=\"math/tex\">Z=P(S)</script></span> for any <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;&amp;#x2208;&lt;/mo&gt;&lt;mrow&gt;&lt;mi mathvariant=\"double-struck\"&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.909ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -733.9 2834.1 822.1\" width=\"6.582ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-4E\" y=\"0\"></use><use x=\"1166\" xlink:href=\"#MJMAIN-2208\" y=\"0\"></use><use x=\"2111\" xlink:href=\"#MJAMS-4E\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi><mo>∈</mo><mrow><mi mathvariant=\"double-struck\">N</mi></mrow></math></span></span><script type=\"math/tex\">N\\in \\mathbb {N}</script></span>. We show that this relation holds in any dimension <i>d</i> and for any map <i>P</i> defined on a hypercube, for which bounds on <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mi mathvariant=\"script\"&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;&amp;#x2212;&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi mathvariant=\"double-struck\"&gt;Z&lt;/mi&gt;&lt;/mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.114ex\" role=\"img\" style=\"vertical-align: -1.207ex;\" viewbox=\"0 -821.4 6456.4 1340.9\" width=\"14.996ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJSCR-44\" y=\"0\"></use><use x=\"855\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><g transform=\"translate(1245,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-45\" y=\"0\"></use><g transform=\"translate(738,-294)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-50\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"751\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><g transform=\"translate(806,0)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-62\" y=\"0\"></use><g transform=\"translate(303,298)\"><use transform=\"scale(0.5)\" x=\"0\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use transform=\"scale(0.5)\" x=\"778\" xlink:href=\"#MJMATHI-6D\" y=\"0\"></use></g></g><g transform=\"translate(2009,0)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJAMS-5A\" y=\"0\"></use><use transform=\"scale(0.5)\" x=\"943\" xlink:href=\"#MJMATHI-64\" y=\"581\"></use></g><use transform=\"scale(0.707)\" x=\"3979\" xlink:href=\"#MJMAIN-2B\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"4758\" xlink:href=\"#MJMATHI-76\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"5243\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></g><use x=\"6066\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"script\">D</mi></mrow><mo stretchy=\"false\">(</mo><msub><mi>E</mi><mrow><mi>P</mi><mo stretchy=\"false\">(</mo><msup><mi>b</mi><mrow><mo>−</mo><mi>m</mi></mrow></msup><msup><mrow><mi mathvariant=\"double-struck\">Z</mi></mrow><mi>d</mi></msup><mo>+</mo><mi>v</mi><mo stretchy=\"false\">)</mo></mrow></msub><mo stretchy=\"false\">)</mo></math></span></span><script type=\"math/tex\">\\mathscr {D}(E_{P(b^{-m}\\mathbb {Z}^d+v)})</script></span> can be obtained. We apply this theorem in <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.013ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -778.3 2358.1 866.5\" width=\"5.477ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use><use x=\"801\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><use x=\"1857\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi><mo>=</mo><mn>1</mn></math></span></span><script type=\"math/tex\">d=1</script></span> to obtain bounds for the <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msup&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/msup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.912ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -735.2 1137.5 823.4\" width=\"2.642ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-4C\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"963\" xlink:href=\"#MJMATHI-70\" y=\"513\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>L</mi><mi>p</mi></msup></math></span></span><script type=\"math/tex\">L^p</script></span>-discrepancy of van der Corput and Niederreiter (0,1) sequences in terms of digit sums for all <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;&amp;lt;&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;&amp;#x2264;&lt;/mo&gt;&lt;mi mathvariant=\"normal\"&gt;&amp;#x221E;&lt;/mi&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.309ex\" role=\"img\" style=\"vertical-align: -0.605ex;\" viewbox=\"0 -733.9 4672.6 994.3\" width=\"10.853ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use><use x=\"778\" xlink:href=\"#MJMAIN-3C\" y=\"0\"></use><use x=\"1834\" xlink:href=\"#MJMATHI-70\" y=\"0\"></use><use x=\"2615\" xlink:href=\"#MJMAIN-2264\" y=\"0\"></use><use x=\"3672\" xlink:href=\"#MJMAIN-221E\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0</mn><mo>&lt;</mo><mi>p</mi><mo>≤</mo><mi mathvariant=\"normal\">∞</mi></math></span></span><script type=\"math/tex\">0<p\\le \\infty </script></span>. In <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.009ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -777 2358.1 865.1\" width=\"5.477ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use><use x=\"801\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><use x=\"1857\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi><mo>=</mo><mn>2</mn></math></span></span><script type=\"math/tex\">d=2</script></span> an application of our construction yields many sequences on the two-sphere, such that the initial segments <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.213ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -735.2 1411.8 952.8\" width=\"3.279ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-5A\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"966\" xlink:href=\"#MJMATHI-4E\" y=\"-213\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Z</mi><mi>N</mi></msub></math></span></span><script type=\"math/tex\">Z_N</script></span> have small <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msup&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi mathvariant=\"normal\"&gt;&amp;#x221E;&lt;/mi&gt;&lt;/msup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.912ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -735.2 1489 823.4\" width=\"3.458ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-4C\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"963\" xlink:href=\"#MJMAIN-221E\" y=\"513\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>L</mi><mi mathvariant=\"normal\">∞</mi></msup></math></span></span><script type=\"math/tex\">L^\\infty </script></span>-discrepancy.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"38 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-025-09706-w","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we construct many sequences S=Sb,d and S=Sb,d in the d-dimensional unit hypercube, which for d=1 are (generalized) van der Corput sequences or Niederreiter’s (0, 1)-sequences in base b, respectively. Further, we introduce the notion of f-subadditivity and use it to define discrepancy functions which subsume the notion of Lp-discrepancy, Wasserstein p-distance, and many more methods to compare empirical measures to an underlying base measure. We will relate bounds for a given discrepancy function D of the multiset of projected lattice sets (treated as empirical measures), P(bmZd), to bounds of D(EZN), i.e. the initial segments of the sequence Z=P(S) for any NN. We show that this relation holds in any dimension d and for any map P defined on a hypercube, for which bounds on D(EP(bmZd+v)) can be obtained. We apply this theorem in d=1 to obtain bounds for the Lp-discrepancy of van der Corput and Niederreiter (0,1) sequences in terms of digit sums for all 0<p. In d=2 an application of our construction yields many sequences on the two-sphere, such that the initial segments ZN have small L-discrepancy.

格的均匀分布:从点集到序列
本文在d维单位超立方体上构造了多个序列S=Sb,d =S^ \Box _b,d{和S=Sb,d =S =S^ }\boxplus _b,d{,它们对于d=1d=1分别是基底b上的(广义)van der Corput序列或Niederreiter的(0,1)序列。此外,我们引入了f-次可加性的概念,并使用它来定义差异函数,该函数包含LpL^p-差异,Wasserstein p-距离的概念,以及许多将经验测度与基础测度进行比较的方法。我们将把投影格集(作为经验测度)的多集P(b−mZdP(b^}-m\mathbb Z{^ D)的给定差异函数D }{}\mathscr D的界与D(EZN) {}\mathscr D{(}E_Z_N)的界联系起来,即对于任意N{∈NN }\in\mathbb N,序列Z=P(S)Z=P(S)的初始段。我们证明了这种关系在任意维D和定义在超立方体上的任意映射P中成立。可以{得到}D(EP(b−mZd+v)) \mathscr D{(}E_P{(b^-{m }\mathbb Z{^} D +v))上的界。在d=1d=1条件下,我们应用该定理得到了van der Corput和Niederreiter(0,1)序列的LpL^p-差异在所有0&lt;p≤∞0条件下的数字和的界。在d=2d=2条件下,我们构造的一个应用在两球上得到了许多序列,使得初始段ZNZ_N具有很小的L∞L^ }\infty -差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Foundations of Computational Mathematics
Foundations of Computational Mathematics 数学-计算机:理论方法
CiteScore
6.90
自引率
3.30%
发文量
46
审稿时长
>12 weeks
期刊介绍: Foundations of Computational Mathematics (FoCM) will publish research and survey papers of the highest quality which further the understanding of the connections between mathematics and computation. The journal aims to promote the exploration of all fundamental issues underlying the creative tension among mathematics, computer science and application areas unencumbered by any external criteria such as the pressure for applications. The journal will thus serve an increasingly important and applicable area of mathematics. The journal hopes to further the understanding of the deep relationships between mathematical theory: analysis, topology, geometry and algebra, and the computational processes as they are evolving in tandem with the modern computer. With its distinguished editorial board selecting papers of the highest quality and interest from the international community, FoCM hopes to influence both mathematics and computation. Relevance to applications will not constitute a requirement for the publication of articles. The journal does not accept code for review however authors who have code/data related to the submission should include a weblink to the repository where the data/code is stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信