{"title":"Doubly Regularized Entropic Wasserstein Barycenter","authors":"Lénaïc Chizat","doi":"10.1007/s10208-025-09724-8","DOIUrl":null,"url":null,"abstract":"<p>We study a general formulation of regularized Wasserstein barycenters that enjoy favorable regularity, approximation, stability and (grid-free) optimization properties. This barycenter is defined as the unique probability measure that minimizes the sum of entropic optimal transport (EOT) costs with respect to a family of given probability measures, plus an entropy term. We denote it the <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.614ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -821.4 2325.2 1125.3\" width=\"5.4ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"389\" xlink:href=\"#MJMATHI-3BB\" y=\"0\"></use><use x=\"973\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><use x=\"1418\" xlink:href=\"#MJMATHI-3C4\" y=\"0\"></use><use x=\"1935\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">(\\lambda ,\\tau )</script></span>-barycenter, where <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.013ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -778.3 583.5 866.5\" width=\"1.355ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-3BB\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">\\lambda </script></span> is the inner regularization strength and <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"1.409ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -518.7 517.5 606.8\" width=\"1.202ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-3C4\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">\\tau </script></span> the outer one. This formulation recovers several previously proposed EOT barycenters for various choices of <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.413ex\" role=\"img\" style=\"vertical-align: -0.606ex;\" viewbox=\"0 -778.3 3380.7 1039.1\" width=\"7.852ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-3BB\" y=\"0\"></use><use x=\"583\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><use x=\"1028\" xlink:href=\"#MJMATHI-3C4\" y=\"0\"></use><use x=\"1823\" xlink:href=\"#MJMAIN-2265\" y=\"0\"></use><use x=\"2880\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">\\lambda ,\\tau \\ge 0</script></span> and generalizes them. First, we show that, as <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.409ex\" role=\"img\" style=\"vertical-align: -0.605ex;\" viewbox=\"0 -777 3602.7 1037.3\" width=\"8.368ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-3BB\" y=\"0\"></use><use x=\"583\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><use x=\"1028\" xlink:href=\"#MJMATHI-3C4\" y=\"0\"></use><use x=\"1823\" xlink:href=\"#MJMAIN-2192\" y=\"0\"></use><use x=\"3102\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">\\lambda , \\tau \\rightarrow 0</script></span>, regularizing doubly can <i>decrease</i> the approximation error compared to a single regularization. More specifically, we show that for smooth densities and the quadratic cost, the leading order term of the suboptimality in the (unregularized) Wasserstein barycenter objective cancels when <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"3.209ex\" role=\"img\" style=\"vertical-align: -1.005ex;\" viewbox=\"0 -949.2 2624.2 1381.8\" width=\"6.095ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-3C4\" y=\"0\"></use><use x=\"795\" xlink:href=\"#MJMAIN-223C\" y=\"0\"></use><g transform=\"translate(1573,0)\"><g transform=\"translate(397,0)\"><rect height=\"60\" stroke=\"none\" width=\"532\" x=\"0\" y=\"220\"></rect><use transform=\"scale(0.707)\" x=\"84\" xlink:href=\"#MJMATHI-3BB\" y=\"565\"></use><use transform=\"scale(0.707)\" x=\"126\" xlink:href=\"#MJMAIN-32\" y=\"-513\"></use></g></g></g></svg></span><script type=\"math/tex\">\\tau \\sim \\frac{\\lambda }{2}</script></span>. We discuss also this phenomenon for isotropic Gaussian distributions where all <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.614ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -821.4 2325.2 1125.3\" width=\"5.4ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"389\" xlink:href=\"#MJMATHI-3BB\" y=\"0\"></use><use x=\"973\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><use x=\"1418\" xlink:href=\"#MJMATHI-3C4\" y=\"0\"></use><use x=\"1935\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">(\\lambda ,\\tau )</script></span>-barycenters have closed-form. Second, we show that for <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.413ex\" role=\"img\" style=\"vertical-align: -0.606ex;\" viewbox=\"0 -778.3 3380.7 1039.1\" width=\"7.852ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-3BB\" y=\"0\"></use><use x=\"583\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><use x=\"1028\" xlink:href=\"#MJMATHI-3C4\" y=\"0\"></use><use x=\"1823\" xlink:href=\"#MJMAIN-3E\" y=\"0\"></use><use x=\"2880\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">\\lambda ,\\tau >0</script></span>, this barycenter has a smooth density and is strongly stable under perturbation of the marginals. In particular, it can be estimated efficiently: given <i>n</i> samples from each of the probability measures, it converges in relative entropy to the population barycenter at a rate <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.409ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -949.2 2312.7 1037.3\" width=\"5.371ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><g transform=\"translate(600,362)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"778\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1279\" xlink:href=\"#MJMAIN-2F\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1779\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use></g></g></svg></span><script type=\"math/tex\">n^{-1/2}</script></span>. Finally, this formulation is amenable to a grid-free optimization algorithm: we propose a simple Noisy Particle Gradient Descent method which, in the mean-field limit, converges globally at an exponential rate to the <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.609ex\" role=\"img\" style=\"vertical-align: -0.705ex;\" viewbox=\"0 -820.1 2325.2 1123.4\" width=\"5.4ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"389\" xlink:href=\"#MJMATHI-3BB\" y=\"0\"></use><use x=\"973\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><use x=\"1418\" xlink:href=\"#MJMATHI-3C4\" y=\"0\"></use><use x=\"1935\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">(\\lambda ,\\tau )</script></span>-barycenter.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"52 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-025-09724-8","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We study a general formulation of regularized Wasserstein barycenters that enjoy favorable regularity, approximation, stability and (grid-free) optimization properties. This barycenter is defined as the unique probability measure that minimizes the sum of entropic optimal transport (EOT) costs with respect to a family of given probability measures, plus an entropy term. We denote it the -barycenter, where is the inner regularization strength and the outer one. This formulation recovers several previously proposed EOT barycenters for various choices of and generalizes them. First, we show that, as , regularizing doubly can decrease the approximation error compared to a single regularization. More specifically, we show that for smooth densities and the quadratic cost, the leading order term of the suboptimality in the (unregularized) Wasserstein barycenter objective cancels when . We discuss also this phenomenon for isotropic Gaussian distributions where all -barycenters have closed-form. Second, we show that for , this barycenter has a smooth density and is strongly stable under perturbation of the marginals. In particular, it can be estimated efficiently: given n samples from each of the probability measures, it converges in relative entropy to the population barycenter at a rate . Finally, this formulation is amenable to a grid-free optimization algorithm: we propose a simple Noisy Particle Gradient Descent method which, in the mean-field limit, converges globally at an exponential rate to the -barycenter.
期刊介绍:
Foundations of Computational Mathematics (FoCM) will publish research and survey papers of the highest quality which further the understanding of the connections between mathematics and computation. The journal aims to promote the exploration of all fundamental issues underlying the creative tension among mathematics, computer science and application areas unencumbered by any external criteria such as the pressure for applications. The journal will thus serve an increasingly important and applicable area of mathematics. The journal hopes to further the understanding of the deep relationships between mathematical theory: analysis, topology, geometry and algebra, and the computational processes as they are evolving in tandem with the modern computer.
With its distinguished editorial board selecting papers of the highest quality and interest from the international community, FoCM hopes to influence both mathematics and computation. Relevance to applications will not constitute a requirement for the publication of articles.
The journal does not accept code for review however authors who have code/data related to the submission should include a weblink to the repository where the data/code is stored.