{"title":"Simple matrix expressions for the curvatures of Grassmannian","authors":"Zehua Lai, Lek-Heng Lim, Ke Ye","doi":"10.1007/s10208-025-09723-9","DOIUrl":null,"url":null,"abstract":"<p>We show that modeling a Grassmannian as symmetric orthogonal matrices <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mspace width=\"thinmathspace\" /><mrow><mi mathvariant=\"normal\">G</mi><mi mathvariant=\"normal\">r</mi></mrow><mspace width=\"thinmathspace\" /></mrow></mrow><mo stretchy=\"false\">(</mo><mi>k</mi><mo>,</mo><msup><mrow><mi mathvariant=\"double-struck\">R</mi></mrow><mi>n</mi></msup><mo stretchy=\"false\">)</mo><mo>&#x2245;</mo><mo fence=\"false\" stretchy=\"false\">{</mo><mi>Q</mi><mo>&#x2208;</mo><msup><mrow><mi mathvariant=\"double-struck\">R</mi></mrow><mrow><mi>n</mi><mo>&#x00D7;</mo><mi>n</mi></mrow></msup><mo>:</mo><msup><mi>Q</mi><mrow><mstyle displaystyle=\"false\" scriptlevel=\"2\"><mrow><mi mathvariant=\"sans-serif\">T</mi></mrow></mstyle></mrow></msup><mi>Q</mi><mo>=</mo><mi>I</mi><mo>,</mo><mspace width=\"thickmathspace\" /><msup><mi>Q</mi><mrow><mstyle displaystyle=\"false\" scriptlevel=\"2\"><mrow><mi mathvariant=\"sans-serif\">T</mi></mrow></mstyle></mrow></msup><mo>=</mo><mi>Q</mi><mo>,</mo><mspace width=\"thickmathspace\" /><mrow><mrow><mspace width=\"thinmathspace\" /><mrow><mi mathvariant=\"normal\">t</mi><mi mathvariant=\"normal\">r</mi></mrow><mspace width=\"thinmathspace\" /></mrow></mrow><mo stretchy=\"false\">(</mo><mi>Q</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mn>2</mn><mi>k</mi><mo>&#x2212;</mo><mi>n</mi><mo fence=\"false\" stretchy=\"false\">}</mo></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.614ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -821.4 27441.3 1125.3\" width=\"63.735ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g transform=\"translate(166,0)\"><use x=\"0\" xlink:href=\"#MJMAIN-47\" y=\"0\"></use><use x=\"785\" xlink:href=\"#MJMAIN-72\" y=\"0\"></use></g><use x=\"1511\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"1900\" xlink:href=\"#MJMATHI-6B\" y=\"0\"></use><use x=\"2422\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><g transform=\"translate(2867,0)\"><use x=\"0\" xlink:href=\"#MJAMS-52\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1021\" xlink:href=\"#MJMATHI-6E\" y=\"581\"></use></g><use x=\"4114\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use><use x=\"4781\" xlink:href=\"#MJMAIN-2245\" y=\"0\"></use><use x=\"5838\" xlink:href=\"#MJMAIN-7B\" y=\"0\"></use><use x=\"6338\" xlink:href=\"#MJMATHI-51\" y=\"0\"></use><use x=\"7407\" xlink:href=\"#MJMAIN-2208\" y=\"0\"></use><g transform=\"translate(8353,0)\"><use x=\"0\" xlink:href=\"#MJAMS-52\" y=\"0\"></use><g transform=\"translate(722,410)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"600\" xlink:href=\"#MJMAIN-D7\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1379\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use></g></g><use x=\"10853\" xlink:href=\"#MJMAIN-3A\" y=\"0\"></use><g transform=\"translate(11409,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-51\" y=\"0\"></use><use transform=\"scale(0.5)\" x=\"1582\" xlink:href=\"#MJSS-54\" y=\"725\"></use></g><use x=\"12641\" xlink:href=\"#MJMATHI-51\" y=\"0\"></use><use x=\"13711\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><use x=\"14767\" xlink:href=\"#MJMATHI-49\" y=\"0\"></use><use x=\"15271\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><g transform=\"translate(15994,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-51\" y=\"0\"></use><use transform=\"scale(0.5)\" x=\"1582\" xlink:href=\"#MJSS-54\" y=\"725\"></use></g><use x=\"17504\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><use x=\"18561\" xlink:href=\"#MJMATHI-51\" y=\"0\"></use><use x=\"19352\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><g transform=\"translate(20075,0)\"><g transform=\"translate(166,0)\"><use x=\"0\" xlink:href=\"#MJMAIN-74\" y=\"0\"></use><use x=\"389\" xlink:href=\"#MJMAIN-72\" y=\"0\"></use></g></g><use x=\"21190\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"21580\" xlink:href=\"#MJMATHI-51\" y=\"0\"></use><use x=\"22371\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use><use x=\"23039\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><use x=\"24095\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use x=\"24595\" xlink:href=\"#MJMATHI-6B\" y=\"0\"></use><use x=\"25339\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use x=\"26340\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"26940\" xlink:href=\"#MJMAIN-7D\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mspace width=\"thinmathspace\"></mspace><mrow><mi mathvariant=\"normal\">G</mi><mi mathvariant=\"normal\">r</mi></mrow><mspace width=\"thinmathspace\"></mspace></mrow></mrow><mo stretchy=\"false\">(</mo><mi>k</mi><mo>,</mo><msup><mrow><mi mathvariant=\"double-struck\">R</mi></mrow><mi>n</mi></msup><mo stretchy=\"false\">)</mo><mo>≅</mo><mo fence=\"false\" stretchy=\"false\">{</mo><mi>Q</mi><mo>∈</mo><msup><mrow><mi mathvariant=\"double-struck\">R</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msup><mo>:</mo><msup><mi>Q</mi><mrow><mstyle displaystyle=\"false\" scriptlevel=\"2\"><mrow><mi mathvariant=\"sans-serif\">T</mi></mrow></mstyle></mrow></msup><mi>Q</mi><mo>=</mo><mi>I</mi><mo>,</mo><mspace width=\"thickmathspace\"></mspace><msup><mi>Q</mi><mrow><mstyle displaystyle=\"false\" scriptlevel=\"2\"><mrow><mi mathvariant=\"sans-serif\">T</mi></mrow></mstyle></mrow></msup><mo>=</mo><mi>Q</mi><mo>,</mo><mspace width=\"thickmathspace\"></mspace><mrow><mrow><mspace width=\"thinmathspace\"></mspace><mrow><mi mathvariant=\"normal\">t</mi><mi mathvariant=\"normal\">r</mi></mrow><mspace width=\"thinmathspace\"></mspace></mrow></mrow><mo stretchy=\"false\">(</mo><mi>Q</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mn>2</mn><mi>k</mi><mo>−</mo><mi>n</mi><mo fence=\"false\" stretchy=\"false\">}</mo></math></span></span><script type=\"math/tex\">{{\\,\\textrm{Gr}\\,}}(k,\\mathbb {R}^n) \\cong \\{Q \\in \\mathbb {R}^{n \\times n} : Q^{\\scriptscriptstyle \\textsf{T}}Q = I, \\; Q^{\\scriptscriptstyle \\textsf{T}}= Q,\\; {{\\,\\textrm{tr}\\,}}(Q)=2k - n\\}</script></span> yields exceedingly simple matrix formulas for various curvatures and curvature-related quantities, both intrinsic and extrinsic. These include Riemann, Ricci, Jacobi, sectional, scalar, mean, principal, and Gaussian curvatures; Schouten, Weyl, Cotton, Bach, Plebański, cocurvature, nonmetricity, and torsion tensors; first, second, and third fundamental forms; Gauss and Weingarten maps; and upper and lower delta invariants. We will derive explicit, simple expressions for the aforementioned quantities in terms of standard matrix operations that are stably computable with numerical linear algebra. Many of these aforementioned quantities have never before been presented for the Grassmannian.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"23 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-025-09723-9","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We show that modeling a Grassmannian as symmetric orthogonal matrices yields exceedingly simple matrix formulas for various curvatures and curvature-related quantities, both intrinsic and extrinsic. These include Riemann, Ricci, Jacobi, sectional, scalar, mean, principal, and Gaussian curvatures; Schouten, Weyl, Cotton, Bach, Plebański, cocurvature, nonmetricity, and torsion tensors; first, second, and third fundamental forms; Gauss and Weingarten maps; and upper and lower delta invariants. We will derive explicit, simple expressions for the aforementioned quantities in terms of standard matrix operations that are stably computable with numerical linear algebra. Many of these aforementioned quantities have never before been presented for the Grassmannian.
期刊介绍:
Foundations of Computational Mathematics (FoCM) will publish research and survey papers of the highest quality which further the understanding of the connections between mathematics and computation. The journal aims to promote the exploration of all fundamental issues underlying the creative tension among mathematics, computer science and application areas unencumbered by any external criteria such as the pressure for applications. The journal will thus serve an increasingly important and applicable area of mathematics. The journal hopes to further the understanding of the deep relationships between mathematical theory: analysis, topology, geometry and algebra, and the computational processes as they are evolving in tandem with the modern computer.
With its distinguished editorial board selecting papers of the highest quality and interest from the international community, FoCM hopes to influence both mathematics and computation. Relevance to applications will not constitute a requirement for the publication of articles.
The journal does not accept code for review however authors who have code/data related to the submission should include a weblink to the repository where the data/code is stored.