Minfeng Qi, Qin Wang, Zhipeng Wang, Manvir Schneider, Tianqing Zhu, Shiping Chen, William Knottenbelt, Thomas Hardjono
{"title":"SoK: Bitcoin Layer Two (L2)","authors":"Minfeng Qi, Qin Wang, Zhipeng Wang, Manvir Schneider, Tianqing Zhu, Shiping Chen, William Knottenbelt, Thomas Hardjono","doi":"10.1145/3763232","DOIUrl":null,"url":null,"abstract":"In this paper, we present the first Systematization of Knowledge (SoK) on constructing Layer Two (L2) solutions for Bitcoin. We carefully examine a representative subset of ongoing Bitcoin L2 solutions (40 out of 335 extensively investigated cases) and provide a concise yet impactful identification of six classic design patterns through two approaches (i.e., modifying transactions & creating proofs). Notably, we are the first to incorporate the inscription technology (emerged in mid-2023), along with a series of related innovations. We further establish a reference framework that serves as a baseline criterion ideally suited for evaluating the security aspects of Bitcoin L2 solutions, and which can also be extended to broader L2 applications. We apply this framework to evaluate each of the projects we investigated. We find that the inscription-based approaches introduce new <jats:italic toggle=\"yes\">functionality</jats:italic> (i.e., programability) to Bitcoin systems, whereas existing proof-based solutions primarily address scalability challenges. Our security analysis reveals new attack vectors targeting data/state (availability, verification), assets (withdrawal, recovery), and users (disputes, censorship).","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"38 1","pages":""},"PeriodicalIF":28.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3763232","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present the first Systematization of Knowledge (SoK) on constructing Layer Two (L2) solutions for Bitcoin. We carefully examine a representative subset of ongoing Bitcoin L2 solutions (40 out of 335 extensively investigated cases) and provide a concise yet impactful identification of six classic design patterns through two approaches (i.e., modifying transactions & creating proofs). Notably, we are the first to incorporate the inscription technology (emerged in mid-2023), along with a series of related innovations. We further establish a reference framework that serves as a baseline criterion ideally suited for evaluating the security aspects of Bitcoin L2 solutions, and which can also be extended to broader L2 applications. We apply this framework to evaluate each of the projects we investigated. We find that the inscription-based approaches introduce new functionality (i.e., programability) to Bitcoin systems, whereas existing proof-based solutions primarily address scalability challenges. Our security analysis reveals new attack vectors targeting data/state (availability, verification), assets (withdrawal, recovery), and users (disputes, censorship).
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.