Yunfei Wang, Sixia Li, Yuzhu Yang, Peng Zhang, Wenfei Qin, Sai Zhou, Xuan Miao, Zenggang Lin, Wei-Sheng Liu
{"title":"Dual-Emission-Center Strategy in Ca3Ga4O9:Er3+/Sm3+ Enables Color-Tunable Afterglow for Multimodal Luminescent Encryption Materials","authors":"Yunfei Wang, Sixia Li, Yuzhu Yang, Peng Zhang, Wenfei Qin, Sai Zhou, Xuan Miao, Zenggang Lin, Wei-Sheng Liu","doi":"10.1039/d5qi01359c","DOIUrl":null,"url":null,"abstract":"Materials exhibiting long-persistent luminescence (LPL) in the visible spectrum hold pivotal importance for anti-counterfeiting and encryption. Nevertheless, conventional LPL materials typically only exhibit single-color afterglow emission. This constraint makes it imperative to develop multimodal luminescent systems featuring spectrally tunable afterglow. Herein, the Er3+/Sm3+ co-doped Ca3Ga4O9 phosphors achieve multicolor photoluminescence (PL), upconversion luminescence (UCL), and color-tunable LPL by responding to multiple excitations modes ranging from ultraviolet (UV) to near-infrared radiation (NIR). Spectral analysis reveals a green-to-orange multicolor afterglow by varying the relative concentrations of Er3+ and Sm3+ ions. To unravel the mechanism of multicolor afterglow, afterglow spectra and thermoluminescence (TL) spectra are systematically employed to probe the trap distribution mediated by Er3+ and Sm3+ co-doping. Finally, their prospective application in optical anti-counterfeiting and information encryption is also systematically investigated based on the color-tunable LPL. This successful integration of multicolor, multimodal luminescence with color-tunable afterglow in a single host provides a novel platform for anti-counterfeiting and encryption, significantly expanding the visual diversity of displayable information.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"13 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5qi01359c","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Materials exhibiting long-persistent luminescence (LPL) in the visible spectrum hold pivotal importance for anti-counterfeiting and encryption. Nevertheless, conventional LPL materials typically only exhibit single-color afterglow emission. This constraint makes it imperative to develop multimodal luminescent systems featuring spectrally tunable afterglow. Herein, the Er3+/Sm3+ co-doped Ca3Ga4O9 phosphors achieve multicolor photoluminescence (PL), upconversion luminescence (UCL), and color-tunable LPL by responding to multiple excitations modes ranging from ultraviolet (UV) to near-infrared radiation (NIR). Spectral analysis reveals a green-to-orange multicolor afterglow by varying the relative concentrations of Er3+ and Sm3+ ions. To unravel the mechanism of multicolor afterglow, afterglow spectra and thermoluminescence (TL) spectra are systematically employed to probe the trap distribution mediated by Er3+ and Sm3+ co-doping. Finally, their prospective application in optical anti-counterfeiting and information encryption is also systematically investigated based on the color-tunable LPL. This successful integration of multicolor, multimodal luminescence with color-tunable afterglow in a single host provides a novel platform for anti-counterfeiting and encryption, significantly expanding the visual diversity of displayable information.