Controlling antithetic variates

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Reiichiro Kawai
{"title":"Controlling antithetic variates","authors":"Reiichiro Kawai","doi":"10.1016/j.ejor.2025.08.027","DOIUrl":null,"url":null,"abstract":"<div><div>We establish and investigate a theoretical framework for controlling covariance matrices in the method of antithetic variates through control variates to further reduce estimator variance. Instead of preemptively and carefully designing an estimator vector with negatively correlated components, the proposed framework starts with a predefined estimator vector that incorporates specified control variates. The weights and control matrix are then analytically determined through matrix algebra. The joint optimality of the resulting estimator variance is ensured with respect to both the weights and the control matrix, with closed-form implementable formulas derived for the optimal parameter pair. Numerical results are provided for various typical examples to illustrate the effectiveness, potential, and challenges of the proposed framework.</div></div>","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"328 1","pages":"Pages 162-173"},"PeriodicalIF":6.0000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377221725006642","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We establish and investigate a theoretical framework for controlling covariance matrices in the method of antithetic variates through control variates to further reduce estimator variance. Instead of preemptively and carefully designing an estimator vector with negatively correlated components, the proposed framework starts with a predefined estimator vector that incorporates specified control variates. The weights and control matrix are then analytically determined through matrix algebra. The joint optimality of the resulting estimator variance is ensured with respect to both the weights and the control matrix, with closed-form implementable formulas derived for the optimal parameter pair. Numerical results are provided for various typical examples to illustrate the effectiveness, potential, and challenges of the proposed framework.
控制对立变量
我们建立并研究了一种通过控制变量控制对偶变量法中协方差矩阵的理论框架,以进一步减小估计量方差。提议的框架不是预先和仔细地设计具有负相关分量的估计向量,而是从包含指定控制变量的预定义估计向量开始。然后通过矩阵代数解析确定权值和控制矩阵。保证了所得到的估计量方差相对于权值和控制矩阵的联合最优性,并推导了最优参数对的封闭可实现公式。数值结果提供了各种典型的例子,以说明所提出的框架的有效性,潜力和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信