{"title":"Directional False Discovery Rate Control in Large-Scale Multiple Testing Under Data Dependence","authors":"Wendong Li, Jianqing Shi, Yi Wang, Dongdong Xiang","doi":"10.1002/asmb.70041","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Detecting directional signals in multiple testing is crucial to take targeted and effective measures. In this article, we consider the directional multiple testing under the dependence problem within a three-group model. Given the assumption that the observed data are generated according to an underlying three-state hidden Markov model, we develop oracle and data-driven procedures to maximize the expected number of true discoveries (ETD) while controlling the false discovery rates (FDRs) of both alternative states at their nominal levels. It is shown theoretically that the proposed directional multiple testing procedures are valid and have certain optimality properties for directional FDR-control. An extensive numerical study shows that our procedures are significantly more powerful than their competitors since the former can accommodate the dependence structure among hypotheses. The proposed procedures also exhibit high flexibility by allowing different nominal levels for the two alternative states, which is appealing in cases when the false discoveries of different alternative states are not equally important. As a demonstration, the proposed data-driven procedure is applied to learn the transcriptomic characteristics of bronchoalveolar lavage fluid in COVID-19 patients.</p>\n </div>","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":"41 5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asmb.70041","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Detecting directional signals in multiple testing is crucial to take targeted and effective measures. In this article, we consider the directional multiple testing under the dependence problem within a three-group model. Given the assumption that the observed data are generated according to an underlying three-state hidden Markov model, we develop oracle and data-driven procedures to maximize the expected number of true discoveries (ETD) while controlling the false discovery rates (FDRs) of both alternative states at their nominal levels. It is shown theoretically that the proposed directional multiple testing procedures are valid and have certain optimality properties for directional FDR-control. An extensive numerical study shows that our procedures are significantly more powerful than their competitors since the former can accommodate the dependence structure among hypotheses. The proposed procedures also exhibit high flexibility by allowing different nominal levels for the two alternative states, which is appealing in cases when the false discoveries of different alternative states are not equally important. As a demonstration, the proposed data-driven procedure is applied to learn the transcriptomic characteristics of bronchoalveolar lavage fluid in COVID-19 patients.
期刊介绍:
ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process.
The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.