Remote Sensing-based Machine Learning Techniques for Mapping Gold-Mineralized Alteration Zones in the Fatira Mine Area, Egypt

IF 3.7 3区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Refaey EL-WARDANY, Jiangang JIAO, Basem ZOHEIR, Lobna KHEDR, Mustafa KUMRAL, Lei LIU, Ibrahem ABU EL-LEIL, Ahmed ORABI, Lotfy ABD EL-SALAM, Amr ABDELNASSER
{"title":"Remote Sensing-based Machine Learning Techniques for Mapping Gold-Mineralized Alteration Zones in the Fatira Mine Area, Egypt","authors":"Refaey EL-WARDANY,&nbsp;Jiangang JIAO,&nbsp;Basem ZOHEIR,&nbsp;Lobna KHEDR,&nbsp;Mustafa KUMRAL,&nbsp;Lei LIU,&nbsp;Ibrahem ABU EL-LEIL,&nbsp;Ahmed ORABI,&nbsp;Lotfy ABD EL-SALAM,&nbsp;Amr ABDELNASSER","doi":"10.1111/1755-6724.15333","DOIUrl":null,"url":null,"abstract":"<p>In the Fatira (Abu Zawal) mine area, located in the northern Eastern Desert of Egypt, fieldwork and mineralogical analysis, integrated with machine learning techniques applied to Landsat-8 OLI, ASTER, and Sentinel-2 multi-spectral imagery (MSI) data delineate gold-sulfide mineralization in altered rocks. Gold (Au) anomalies in hydrothermal breccias and quartz veins are associated with NE-oriented felsite dykes and silicified granitic rocks. Two main alteration types are identified: a pyrite-sericite-quartz and a sulfide-chlorite-carbonate assemblage, locally with dispersed free-milling Au specks. Dimensionality reduction techniques, including principal component analysis (PCA) and independent component analysis (ICA), enabled mapping of alteration types. Sentinel-2 PC125 composite images offered efficient lithological differentiation, while supervised classifications, i.e., the support vector machine (SVM) of Landsat-8 yielded an accuracy of 88.55% and a Kappa value of 0.86. ASTER mineral indices contributed to map hydrothermal alteration mineral phases, including sericite, muscovite, kaolinite, and iron oxides. Results indicate that post-magmatic epigenetic hydrothermal activity significantly contributed to the Au-sulfide mineralization in the Fatira area, distinguishing it from the more prevalent orogenic gold deposits in the region.</p>","PeriodicalId":7095,"journal":{"name":"Acta Geologica Sinica ‐ English Edition","volume":"99 4","pages":"1196-1223"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geologica Sinica ‐ English Edition","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1755-6724.15333","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the Fatira (Abu Zawal) mine area, located in the northern Eastern Desert of Egypt, fieldwork and mineralogical analysis, integrated with machine learning techniques applied to Landsat-8 OLI, ASTER, and Sentinel-2 multi-spectral imagery (MSI) data delineate gold-sulfide mineralization in altered rocks. Gold (Au) anomalies in hydrothermal breccias and quartz veins are associated with NE-oriented felsite dykes and silicified granitic rocks. Two main alteration types are identified: a pyrite-sericite-quartz and a sulfide-chlorite-carbonate assemblage, locally with dispersed free-milling Au specks. Dimensionality reduction techniques, including principal component analysis (PCA) and independent component analysis (ICA), enabled mapping of alteration types. Sentinel-2 PC125 composite images offered efficient lithological differentiation, while supervised classifications, i.e., the support vector machine (SVM) of Landsat-8 yielded an accuracy of 88.55% and a Kappa value of 0.86. ASTER mineral indices contributed to map hydrothermal alteration mineral phases, including sericite, muscovite, kaolinite, and iron oxides. Results indicate that post-magmatic epigenetic hydrothermal activity significantly contributed to the Au-sulfide mineralization in the Fatira area, distinguishing it from the more prevalent orogenic gold deposits in the region.

Abstract Image

基于遥感的机器学习技术在埃及法提拉矿区金矿化蚀变带制图中的应用
在位于埃及东部沙漠北部的Fatira (Abu Zawal)矿区,实地考察和矿物学分析,结合应用于Landsat-8 OLI、ASTER和Sentinel-2多光谱成像(MSI)数据的机器学习技术,描绘了蚀变岩石中的硫化金矿化。热液角砾岩和石英脉中的金(Au)异常与北东向长叶岩和硅化花岗岩有关。确定了两种主要蚀变类型:黄铁矿-绢云母-石英和硫化物-绿泥石-碳酸盐组合,局部有分散的自由磨金斑点。包括主成分分析(PCA)和独立成分分析(ICA)在内的降维技术,实现了蚀变类型的映射。Sentinel-2 PC125合成图像提供了有效的岩性区分,而监督分类,即Landsat-8的支持向量机(SVM)的准确率为88.55%,Kappa值为0.86。ASTER矿物指数有助于绘制热液蚀变物相图,包括绢云母、白云母、高岭石和氧化铁。结果表明,岩浆期后的表生热液活动对法蒂拉地区的金硫化物矿化起着重要作用,使其区别于该地区较为普遍的造山带金矿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Geologica Sinica ‐ English Edition
Acta Geologica Sinica ‐ English Edition 地学-地球科学综合
CiteScore
3.00
自引率
12.10%
发文量
3039
审稿时长
6 months
期刊介绍: Acta Geologica Sinica mainly reports the latest and most important achievements in the theoretical and basic research in geological sciences, together with new technologies, in China. Papers published involve various aspects of research concerning geosciences and related disciplines, such as stratigraphy, palaeontology, origin and history of the Earth, structural geology, tectonics, mineralogy, petrology, geochemistry, geophysics, geology of mineral deposits, hydrogeology, engineering geology, environmental geology, regional geology and new theories and technologies of geological exploration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信