Few-shot meta-learning for concrete strength prediction: a model-agnostic approach with SHAP analysis

Mayaz Uddin Gazi, Md. Titumir Hasan, Ponkaj Debnath
{"title":"Few-shot meta-learning for concrete strength prediction: a model-agnostic approach with SHAP analysis","authors":"Mayaz Uddin Gazi,&nbsp;Md. Titumir Hasan,&nbsp;Ponkaj Debnath","doi":"10.1007/s43503-025-00064-8","DOIUrl":null,"url":null,"abstract":"<div><p>Predicting concrete compressive strength with limited data remains a critical challenge in civil engineering. This study proposes a novel framework integrating Model-Agnostic Meta-Learning (MAML) with SHAP (Shapley Additive Explanations) to improve predictive accuracy and interpretability in data-scarce scenarios. Unlike conventional machine learning models that require extensive data, the MAML-based approach enables rapid adaptation to new tasks using minimal samples, offering robust generalization in few-shot learning contexts. The proposed pipeline includes structured preprocessing, normalization, a neural network-based meta-learning core, and SHAP-based feature attribution. A curated dataset of 430 samples was used, focusing on 28-day compressive strength, with input features including cement, water, aggregates, admixtures, and age. Compared to standard models like XGBoost and Random Forest, the MAML framework achieved superior performance, with MAE = 3.56 MPa, RMSE = 5.55 MPa, and R<sup>2</sup> = 0.913. SHAP analysis revealed nonlinear interactions and dominant factors like water-cement ratio, curing age, and aggregate content. Statistical validation via the Wilcoxon Signed-Rank Test confirmed the significance of the model’s improvements (p &lt; 0.05). Furthermore, SHAP insights closely align with domain knowledge and mix design principles, enhancing model transparency for practical application. This work demonstrates the applicability of meta-learning in civil engineering and provides a scalable, interpretable solution for strength prediction in real-world, data-limited conditions. </p></div>","PeriodicalId":72138,"journal":{"name":"AI in civil engineering","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43503-025-00064-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI in civil engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43503-025-00064-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting concrete compressive strength with limited data remains a critical challenge in civil engineering. This study proposes a novel framework integrating Model-Agnostic Meta-Learning (MAML) with SHAP (Shapley Additive Explanations) to improve predictive accuracy and interpretability in data-scarce scenarios. Unlike conventional machine learning models that require extensive data, the MAML-based approach enables rapid adaptation to new tasks using minimal samples, offering robust generalization in few-shot learning contexts. The proposed pipeline includes structured preprocessing, normalization, a neural network-based meta-learning core, and SHAP-based feature attribution. A curated dataset of 430 samples was used, focusing on 28-day compressive strength, with input features including cement, water, aggregates, admixtures, and age. Compared to standard models like XGBoost and Random Forest, the MAML framework achieved superior performance, with MAE = 3.56 MPa, RMSE = 5.55 MPa, and R2 = 0.913. SHAP analysis revealed nonlinear interactions and dominant factors like water-cement ratio, curing age, and aggregate content. Statistical validation via the Wilcoxon Signed-Rank Test confirmed the significance of the model’s improvements (p < 0.05). Furthermore, SHAP insights closely align with domain knowledge and mix design principles, enhancing model transparency for practical application. This work demonstrates the applicability of meta-learning in civil engineering and provides a scalable, interpretable solution for strength prediction in real-world, data-limited conditions.

基于少量元学习的混凝土强度预测:基于SHAP分析的模型不可知方法
利用有限的数据预测混凝土抗压强度仍然是土木工程中的一个关键挑战。本研究提出了一个整合模型不可知元学习(MAML)和Shapley加性解释(Shapley Additive Explanations)的新框架,以提高数据稀缺场景下的预测准确性和可解释性。与需要大量数据的传统机器学习模型不同,基于maml的方法可以使用最少的样本快速适应新任务,在少量的学习环境中提供强大的泛化。提出的管道包括结构化预处理、规范化、基于神经网络的元学习核心和基于shap的特征归属。使用了430个样本的精心整理的数据集,重点关注28天的抗压强度,输入特征包括水泥、水、骨料、外加剂和年龄。与XGBoost和Random Forest等标准模型相比,MAML框架的MAE = 3.56 MPa, RMSE = 5.55 MPa, R2 = 0.913,具有更好的性能。SHAP分析揭示了非线性相互作用和水灰比、养护龄期和骨料含量等主导因素。通过Wilcoxon Signed-Rank检验的统计验证证实了模型改进的显著性(p < 0.05)。此外,SHAP的见解与领域知识和混合设计原则紧密结合,提高了实际应用的模型透明度。这项工作证明了元学习在土木工程中的适用性,并为现实世界中数据有限的条件下的强度预测提供了可扩展、可解释的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信