{"title":"Few-shot meta-learning for concrete strength prediction: a model-agnostic approach with SHAP analysis","authors":"Mayaz Uddin Gazi, Md. Titumir Hasan, Ponkaj Debnath","doi":"10.1007/s43503-025-00064-8","DOIUrl":null,"url":null,"abstract":"<div><p>Predicting concrete compressive strength with limited data remains a critical challenge in civil engineering. This study proposes a novel framework integrating Model-Agnostic Meta-Learning (MAML) with SHAP (Shapley Additive Explanations) to improve predictive accuracy and interpretability in data-scarce scenarios. Unlike conventional machine learning models that require extensive data, the MAML-based approach enables rapid adaptation to new tasks using minimal samples, offering robust generalization in few-shot learning contexts. The proposed pipeline includes structured preprocessing, normalization, a neural network-based meta-learning core, and SHAP-based feature attribution. A curated dataset of 430 samples was used, focusing on 28-day compressive strength, with input features including cement, water, aggregates, admixtures, and age. Compared to standard models like XGBoost and Random Forest, the MAML framework achieved superior performance, with MAE = 3.56 MPa, RMSE = 5.55 MPa, and R<sup>2</sup> = 0.913. SHAP analysis revealed nonlinear interactions and dominant factors like water-cement ratio, curing age, and aggregate content. Statistical validation via the Wilcoxon Signed-Rank Test confirmed the significance of the model’s improvements (p < 0.05). Furthermore, SHAP insights closely align with domain knowledge and mix design principles, enhancing model transparency for practical application. This work demonstrates the applicability of meta-learning in civil engineering and provides a scalable, interpretable solution for strength prediction in real-world, data-limited conditions. </p></div>","PeriodicalId":72138,"journal":{"name":"AI in civil engineering","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43503-025-00064-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI in civil engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43503-025-00064-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting concrete compressive strength with limited data remains a critical challenge in civil engineering. This study proposes a novel framework integrating Model-Agnostic Meta-Learning (MAML) with SHAP (Shapley Additive Explanations) to improve predictive accuracy and interpretability in data-scarce scenarios. Unlike conventional machine learning models that require extensive data, the MAML-based approach enables rapid adaptation to new tasks using minimal samples, offering robust generalization in few-shot learning contexts. The proposed pipeline includes structured preprocessing, normalization, a neural network-based meta-learning core, and SHAP-based feature attribution. A curated dataset of 430 samples was used, focusing on 28-day compressive strength, with input features including cement, water, aggregates, admixtures, and age. Compared to standard models like XGBoost and Random Forest, the MAML framework achieved superior performance, with MAE = 3.56 MPa, RMSE = 5.55 MPa, and R2 = 0.913. SHAP analysis revealed nonlinear interactions and dominant factors like water-cement ratio, curing age, and aggregate content. Statistical validation via the Wilcoxon Signed-Rank Test confirmed the significance of the model’s improvements (p < 0.05). Furthermore, SHAP insights closely align with domain knowledge and mix design principles, enhancing model transparency for practical application. This work demonstrates the applicability of meta-learning in civil engineering and provides a scalable, interpretable solution for strength prediction in real-world, data-limited conditions.